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CHAPTER 1 - BACKGROUND LITERATURE 

Social relationships are complex and therefore likely require the coordination of multiple 

neurochemicals active within neural circuits for their formation and maintenance.  These circuits 

may include pathways regulating learning, memory, motivation, reward, and attention.  Two 

neurochemical systems have been implicated in social relationships: catecholamines 

(norepinephrine and dopamine) and nonapeptides (oxytocin and vasopressin).  The avian 

homologue of oxytocin (OT) is mesotocin (MT) and the avian form of vasopressin (AVP) is 

vasotocin (VT).   

The Zebra Finch as an Animal Model for Social Relationships 

There are several benefits to using zebra finches as a model for social relationships.  

First, it is important to establish the neural correlates of monogamous pairing in more than one 

animal species.  A popular animal model of monogamy has been the prairie vole.  Zebra finches 

use visual and vocal cues, similar to humans, while prairie voles and other rodents rely mostly on 

olfactory cues.  Zebra finches live in large social groups, whereas prairie voles are aggressive 

toward others outside the family unit.  Zebra finches are an excellent model of learning and 

memory, the neurobiology of the song system is well understood, and the genome is fully 

sequenced and well-annotated.  In mixed-sex group-housed animals, fewer than half form a pair 

relationship within 24 hr, but over 75% of animals pair in 48hr (unpublished data from our lab). 

In contrast, prairie voles will pair after 24 hours of cohabitation with a single, opposite-sex 

conspecific, indicating that zebra finches are more selective than are prairie voles in their pairing.  
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For these reasons, zebra finch social relationships appear to have more in common with human 

relationships than do prairie vole relationships. 

Communication is a vital component to the formation of social relationships in the zebra 

finch (Zann, 1996).  During development, it is important for both males and females to learn 

their tutor’s song.  Males will use this song to develop their own unique song and females will 

use it as a template to evaluate male song in the future (Konishi and Akutagawa 1985; Marler 

1991; Riebel 2000; Funabiki and Konishi 2003; Riebel 2003).  Zebra finches recognize and 

distinguish their parents and pair bond partners from familiar conspecifics by their songs and 

calls (Zann, 1996).  The brain areas involved in song production and audition are analogous to 

those in the human auditory system (Bolhuis, Okanova, & Scharff, 2010; Doupe & Kuhl, 1999; 

Jarvis, 2007; Moorman et al., 2012), making zebra finches an excellent model for human 

language acquisition and communication.  

The Song System 

The avian song system is well understood (Nottebohm, Alvarez-Buylla et al. 1990; 

Nottebohm 1991; Nottebohm 2002; Reiner, Perkel et al. 2004), and is an excellent experimental 

model for vocal communication, learning, and memory.  Male zebra finches develop a unique 

song based on song learned from their fathers, or “tutors,” during a sensitive period and other 

males in their colony (Konishi and Akutagawa 1985; Marler 1991; Funabiki and Konishi 2003).  

Furthermore, the brain areas underlying the song system have been implicated in learning and 

memory (Bolhuis, Zijlstra et al. 2000; Bolhuis, Hetebrij et al. 2001; Terpstra, Bolhuis et al. 2004; 

Bolhuis and Gahr 2006). 
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The song system contains two major pathways: the sensorimotor pathway and the 

anterior forebrain pathway (AFP; (Solis, Brainard et al. 2000); see Table 1).  The sensorimotor 

pathway is necessary for normal song production throughout life and consists of the HVC 

(proper name), robust nucleus of the arcopallium (RA), and the tracheosyringeal portion of the 

hypoglossal nucleus (nXIIts; (Solis, Brainard et al. 2000).  RA also projects to nuclei involved in 

the control of respiration.  The AFP is a basal ganglia-forebrain circuit important in evaluating 

song feedback and modifying vocal output (Solis, Brainard et al. 2000).  The AFP includes Area 

X, the medial nucleus of the dorsolateral thalamus (DLM), and lateral magnocellular nucleus of 

the anterior nidopallium (LMAN; Solis, Brainard et al. 2000).  Neurons in the song system nuclei 

HVC, LMAN, Area X and RA are activated when the bird is singing (Solis, Brainard et al. 2000; 

Bolhuis and Gahr 2006).  Female zebra finches do not produce song, but have a song system 

similar to males, although with significantly smaller (or non-existent, as is the case with Area X) 

nuclei (MacDougall-Shackleton, Hulse et al. 1998). 

Song is an important method of vocal communication in song bird species and one of the 

primary functions of male song is thought to be female attraction (Searcy & Yasukawa, 1996).  

Female zebra finches showed a preference for an individual male’s directed song, and this effect 

is strongest for the directed song of the female’s mate (Woolley & Doupe, 2008).  Although male 

directed song is extremely important in courtship and initial pair bond formation (Tomaszycki & 

Adkins-Regan, 2005), it is not necessary to maintain a formed pairbond as demonstrated by the 

continued paired status between females and surgically muted or song altered males 

(Tomaszycki & Adkins-Regan 2006). 

The Auditory System 
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Since females do not sing, but instead choose males on the basis of song (Tomaszycki 

and Adkins-Regan 2005), the auditory pathway is important for adult females. The auditory 

pathway consists of the caudal medial mesopallium (CMM), caudal medial nidopallium (NCM), 

and Field L (Jarvis and Nottebohm 1997).  The auditory pathway does have reciprocal 

connections to the song system.  Exposing zebra finches to conspecific song leads to increased 

neuronal activation in the NCM and CMM, but not in the song system (Mello, Vicario et al. 

1992; Mello and Clayton 1994; Bolhuis, Zijlstra et al. 2000), indicating that these brain areas 

have a specialized function for song recognition. The expression of immediate early genes 

(IEGs) (Sagar, Sharp et al. 1988), primarily ZENK (an acronym of zif-268, egr-1, ngfi-a and 

krox-24; (Moorman, Mello et al. 2011), have been used as a proxy for neuronal activation. 

The findings of several studies indicate that the NCM and CMM are involved in both the 

processing of perceptual information involving song complexity and in the storage of song 

memory in songbirds and parrots (Sockman, Gentner et al. 2002; Bolhuis and Eda-Fujiwara 

2003; Eda‐Fujiwara, Satoh et al. 2003).  Both male and female finches prefer their tutors’ song to 

novel song (Miller 1979; Riebel, Smallegange et al. 2002; Riebel 2003), which suggests that they 

have learned the characteristics of tutor song and have formed an auditory memory of it (Bolhuis 

and Gahr 2006).  In males, this ‘template’ is incorporated into their own song (Konishi and 

Akutagawa 1985; Funabiki and Konishi 2003).  In females, the template is used to evaluate male 

song quality in mate choice (Riebel 2000; Riebel 2003).  During development, ZENK is directly 

regulated by song in the NCM during tutor song memory acquisition (Jin and Clayton 1997; 

Stripling, Kruse et al. 2001; Gobes, Zandbergen et al. 2010).  Bilateral neurotoxic lesions of the 

NCM of adult male zebra finches impairs the recognition of tutor song, but not the ability to 
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discriminate other bird calls or the ability to produce song (Gobes, Zandbergen et al. 2010).   

Thus, the NCM plays a specific role in memory for tutor song and not attention-based 

discrimination.  Electrolytic lesions of the CMM, but not lesions of the HVC, disrupted the 

ability of female zebra finches to discriminate conspecific from heterospecific song 

(MacDougall-Shackleton, Hulse et al. 1998).  Taken together, these findings indicate a unique 

role for the NCM and CMM auditory areas in song learning and memory. By extension, these 

regions should play an important role in female song perception and mate choice, a vital 

component of pairing. 

Hypothesis for Ch.2:  Creating a social relationship, such as a monogamous pairbond, will 

increase nonapeptide expression in the paraventricular nucleus (PVN) and bed nucleus of the 

stria terminalis (BSTm) of both male and female zebra finches.  

Nonapeptides and Monogamous Behavior 

The prairie vole is the most popular mammalian model for monogamous social 

relationships.  There is evidence to suggest that both AVP and OT are important for formation of 

the pair bond in male prairie voles.  Monogamous male voles have higher OTR densities in the 

nucleus accumbens (NAc) than non-monogamous males (Ophir, Gessel et al. 2012).  OT 

receptor (OTR—the only OT receptor class) density in the posterior portion of the insula predicts 

mating success in males (Ophir, Gessel et al. 2012). Chronic intracerebroventricular infusions of 

AVP result in selective partner preference in male prairie voles in the absence of mating, which 

can be reversed by administration of a V1aR antagonist (one of the primary AVP receptors 

expressed in the brain; Winslow, Hastings et al. 1993). These studies indicate a role for both 

nonapeptides in monogamous behavior in the male prairie vole. 
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The relationship between OT and social attachments (both pairing and maternal) has been 

the focus of much female prairie vole research. Extracellular concentrations of OT, measured by 

in vivo microdialysis, were increased in the NAc of female prairie voles during unrestricted 

interactions with a male, irrespective of copulation (Ross, Cole et al. 2009).  Inducing over-

expression of OTRs in the NAc of female prairie voles resulted in accelerated partner preference 

formation after 48 hr cohabitation with a male, but had no significant effect on alloparental 

behavior (Ross, Freeman et al. 2009).  These same manipulations in the non-monogamous 

meadow vole had no behavioral effect (Ross, Freeman et al. 2009).  The distribution of OT-

immunoreactive (OT-ir) fibers is quantitatively similar across prairie voles, meadow voles, rats, 

and mice. However, prairie voles have significantly higher OTR distribution compared to other 

species (Ross, Cole et al. 2009).  This indicates a strong relationship between OT and OTR 

expression and female social behavior in the prairie vole.  However, there is also evidence to 

suggest that the sex difference between the nonapeptides may be more complex than previously 

thought.  Administration of both OT and AVP and 1 hr cohabitation increased social contact with 

familiar partner in both male and female prairie voles (Cho, DeVries et al. 1999).  

 Administration of OT+OT antagonist or AVP+AVP antagonist was associated with lower 

levels of social contact in both sexes (Cho, DeVries et al. 1999).  This indicates that both OT and 

AVP are important for social contact in both males and females, but only at high levels.   

Despite the abundant molecular and behavioral evidence implicating the role of nonapeptides in 

social monogamy, these results do not always translate to other species.  There is a great deal of 

evidence demonstrating that V1aR expression in the ventral pallidum (VP) is critical to 

monogamous behavior in the prairie vole (Liu, Curtis et al. 2001, Lim, Wang et al. 2004, Lim 
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and Young 2004, Young, Liu et al. 2008).  However, male prairie voles that demonstrate 

promiscuous behavior in nature do not have significantly different levels of V1aR expression in 

the VP than do males demonstrating monogamous behavior (Ophir, Wolff et al. 2008). There are 

other animal species that exhibit monogamous behavior and do not have high densities of V1aR 

in the VP, such as Peromyscus mice (Turner, Young et al. 2010) and the zebra finch (Goodson, 

Evans et al. 2006). Therefore, it is possible that these receptors may play a permissive role in 

monogamous behavior, rather than dictating it (Ophir, Wolff et al. 2008, Goodson 2013).  This 

may also be true for the OTRs and the role they play in monogamous behaviors. OTRs in the 

NAc are necessary for pair bonding in female prairie voles (Young, Lim et al. 2001, Liu and 

Wang 2003) and exogenous administration of OT via minipump promotes pair bonding in the 

absence of mating (Liu and Wang 2003).  Viral vector-mediated up-regulation of OTR 

expression in the NAc promotes selective partner preference (Ross and Young 2009).  A 

distinction needs to be made between mammalian social attachment and sexual fidelity, as many 

prairie vole litters have multiple paternities, indicating that prairie voles are not sexually 

monogamous (Ophir, Wolff et al. 2008).   

Evidence for the role of nonapeptides in pair bonding in other monogamous species is 

scarce. In monogamous primate species, affiliative behaviors between members of a 

monogamous pair account for variations in urinary OT in both sexes of cotton-top tamarins 

(Snowdon, Pieper et al. 2010), but blocking OT did not alter the preference for a monogamous 

partner over an opposite-sex stranger in marmosets (Smith, Agmo et al. 2010).  OT effects on 

social behavior are not exclusive to monogamous species, as the promiscuous chimpanzee has 

higher urinary OT after exhibiting prosocial food-sharing behavior (Wittig, Crockford et al. 
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2014).  A monogamous fish species, the cichlid, shows no effect of nonapeptide treatments on 

monogamous behavior (Oldfield and Hofmann 2011).  OT administration has been shown to 

increase many affiliative behaviors including trust and cooperation (Baumgartner, Heinrichs et 

al. 2008; Delgado 2008; De Dreu, Greer et al. 2010), positive communication (Ditzen, Schaer et 

al. 2009), empathy (Bartz, Simeon et al. 2011), generosity (Zak, Stanton et al. 2007), social 

recognition memory (Rimmele, Hediger et al. 2009), and interactions with a romantic partner in 

humans [reviewed in (Bartz and Hollander 2006; Feldman 2012; Guastella and MacLeod 2012; 

Yamasue, Yee et al. 2012)].  However, a major criticism of these findings is that other 

explanations for OT’s effects on behavior, such as general anxiety reduction, have not been ruled 

out (Churchland and Winkielman 2012).  Also, the negative findings related to OT activation 

have not been explained, such as maternal aggression (Bosch, Meddle et al. 2005), paternal care 

(Wittfoth-Schardt, Grunding et al. 2012), feelings of envy and gloating (Shamay-Tsoory, Fischer 

et al. 2009), ethnocentrism (De Dreu, Greer et al. 2011), and out-group derogation (De Dreu, 

Greer et al. 2010). Thus, the role of OT in social relationships across species is not well 

understood. 

The social relationship literature promotes the view that nonapeptides regulate 

monogamy across species, but until very recently, the evidence for this has only been found in 

the prairie vole (Curley and Keverne 2005; Goodson and Thompson 2010).   Sex differences in 

the role of nonapeptides in social relationships have been emphasized, but research has also 

contradicted this assertion.  Exogenous administration of both OT and AVP at high doses has 

been shown to facilitate pair bonding in both sexes of prairie voles (Cho, DeVries et al. 1999). 

More recently, the role of nonapeptides in pairing has been extended to zebra finches. Research 
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suggests that mesotocin is important for pairing in both male and female zebra finches (Pedersen 

&Tomaszycki, 2012; Klatt & Goodson, 2013).   

Nonapeptides and the Zebra Finch 

Initial investigations of the effects of VT on social behavior in the zebra finch revealed a 

link between VT and aggressive behavior.  Infusion of a VT antagonist in the (lateral septum) LS 

of male zebra finches significantly reduced aggressive behaviors, while infusion of VT in the 

same area significantly increased beak fencing, an aggressive behavior (Goodson and Adkins-

Regan 1999).  Neither treatment had any effect on directed (courtship) singing or on any other 

courtship or pair bonding behaviors (Goodson and Adkins-Regan 1999).  However, FOS activity 

in VT-ir neurons of the medial bed nucleus of the stria terminalis (BSTm) of male zebra finches 

increases selectively in response to positive social stimuli, such as an opposite-sex conspecific 

(Goodson, Evans et al. 2006) over a positive non-social stimulus (a water bath; Goodson, Rinaldi 

et al., 2009).  Also, males who reliably fail to court females have significantly fewer VT-ir 

neurons in the BSTm than reliable courters (Goodson, Rinaldi et al. 2009). Therefore, these 

findings suggest that VT may have differing effects on behavior depending on the brain area in 

which receptors are activated.  

Mesotocin (MT) also affects behavior in the zebra finch.  Administering an OT 

antagonist in the LS significantly reduces time spent with large groups and familiar social 

partners, but did not decrease total time spent in social contact with conspecifics (Goodson, 

Schrock et al. 2009). These effects were rescued by administering MT directly in the LS (but not 

by VT) supporting a specific effect on the VT3 (OTR) receptor (Goodson, Schrock et al. 2009).  

In five estrildid finch species (two territorial species, a moderately gregarious species, and two 
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highly gregarious species), species-typical group sizes correlate with MT receptor distributions 

in the LS regardless of sex (Goodson, Schrock et al. 2009).  This research is consistent with 

literature from other species suggesting that MT plays a role in sociality (i.e. time spent in the 

company of conspecifics).  

Social behaviors are modified by nonapeptide expression in the brain areas important for 

hearing song.  Both the V1aR and OTR receptors are prevalent in the NCM and CMM (Leung, 

Abebe et al. 2011), auditory areas important for song memory and assessing song quality in both 

sexes.   

Surprisingly, nonapeptide receptor mRNA has not been found in the 4 primary song 

areas, although studies, to date, have been qualitative (Leung et al. 2011). Some research 

supports the idea that the nonapeptides are not involved in singing. Directed song is not 

influenced by central infusions of MT, VT, or other nonapeptide receptor antagonists (Goodson 

and Adkins-Regan 1999; Goodson, Evans et al. 2004; Kabelik, Schrock et al. 2011).  

Furthermore, lowering VT production in the BSTm via VT antisense oligonucleotides also had 

no behavioral effect on directed singing in males (Kelly, Kingsbury et al. 2011).  Chronic 

infusions of a VT antagonist do not impair natural pair bonding behaviors in males when they are 

in a colony environment (Kabelik, Schrock et al. 2011).   However, other studies support the idea 

that nonapeptides are involved in singing. V1aR receptors are present in regions such as the 

ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), areas that project to the 

song system (Gale, Person et al. 2008; Leung, Abebe et al. 2011). Systemically administered OT 

antagonists decrease singing in a colony environment (Pedersen & Tomaszycki, 2012).  Also, 

males who reliably fail to court females have significantly fewer VT-ir neurons in the BSTm 
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than reliable courters (Goodson, Rinaldi et al. 2009).  These results indicate a further need to 

explore the role of nonapeptides in male singing. 

 There is evidence to suggest that nonapeptides, particularly MT, do play a role in pairing 

behavior in the zebra finch.  Administration of an OTA results in a significant decrease in pairing 

behavior in both sexes (Pedersen and Tomaszycki 2012).  Furthermore, OTA treated birds that 

do pair are less likely to remain paired, independent of sex (Klatt and Goodson 2013).   

Collectively, recent research has emphasized a role for nonapeptides in pair bonding in both 

sexes of the zebra finch.  The proposed study seeks to establish a relationship between 

nonapeptide mRNA density in the (paraventricular nucleus) PVN and BSTm and courtship and 

pairing behaviors in a semi-naturalistic experimental paradigm. 

Hypothesis for Ch.3: Forming a social relationship, such as a monogamous pairbond, increases 

expression of catecholaminergic protein in the social behavior networks and auditory regions of 

both male and female zebra finches.  

Dopamine (DA) has also been implicated in the formation of social relationships.  DA is 

one of the primary regulators of monogamous pair bonding behavior in a popular animal model, 

the prairie vole.  Research in this small rodent has shown that DA antagonists block the 

formation of a partner preference in mating female voles, while DA agonists facilitate formation 

of a partner preference in the absence of mating (Gingrich, Liu, Cascio, Wang, & Insel, 2000).  

Additionally, mating-induced DA release selectively activates DA receptors to promote pair 

bond formation in male prairie voles (Aragona & Wang, 2009).   These studies indicate that DA 

receptors are implicated in the motivation to form a pair bond in both male and female prairie 

voles. 
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Although research across a wide array of species has demonstrated the role of DA in 

courtship and sexual behavior, at present, the role of DA in pairing behavior has been largely 

restricted to a single study species, the prairie vole. While the prairie vole has provided important 

insight into the neural processes of monogamous social relationships in mammals, this species 

relies heavily on chemosensory cues to establish a pair bond (Aragona & Wang, 2009).  Thus, 

direct links between results from prairie vole research and less olfactory species, such as humans, 

primates, or birds, need to be made with caution.  

There are several studies indicating that monogamous behavior activates reward 

pathways in the brain in the zebra finch.  The ventral tegmental area (VTA) is an area of the 

midbrain containing a great number of DA neurons and is highly involved in reward and 

motivation in humans, mammals, and birds.  Fibers immunoreactive (ir) for tyrosine hydroxylase 

(TH), which catalyzes the rate limiting step in the synthesis of catecholamines, are present in 

most of the auditory forebrain, thalamus, and midbrain in canaries and white-throated sparrows 

(Appeltants et al., 2001; Matragrano et al., 2011).  Comparisons of various estrildids (finch 

species) that differ in their degree of monogamy and sociality have shown that the number of 

TH-ir neurons in the caudal VTA positively correlates with the degree of sociality (Goodson, et 

al., 2009).  TH density in the caudal VTA was positively correlated with the production of 

directed song in males (Alger, Juang et al. 2011), indicating that the VTA is important for the 

socially rewarding aspects of directed song and courtship.  To further support this line of 

evidence, it has been found that male zebra finches who participate in more courtship behaviors 

have more TH-positive cell bodies in the caudal VTA than males who do not court (Goodson, 

Kabelik et al. 2009).  The number of songs produced by a male finch was positively correlated 
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with the percentage of TH-positive neurons expressing FOS in the caudal VTA (Goodson, 

Kabelik et al. 2009).   

The vertebrate social network is made up of the brain areas:  BSTm, LS, periaqueductal 

grey (PAG), medial preoptic nucleus (POM), and the ventromedial hypothalamus (VMH) (see 

Table 1 for a full list of all abbreviations; Goodson, 2005).  There is an increase in the co-

localization of ZENK and TH-ir in the PAG and an increase in ZENK in the VTA of males who 

exhibited singing behavior compared to those who were silent (Lynch, Diekamp et al. 2008).  

The ZENK levels in the PAG and VTA were not significantly correlated with the amount of 

singing, indicating that catecholaminergic neurons in the PAG are involved in the motivational 

or attentional components of song and not the motor output (Lynch, Diekamp et al. 2008).  These 

data indicate that DA receptors in social reward areas of the brain are implicated in the 

monogamous behavior of male zebra finches. 

In female white-throated sparrows, playback of conspecific male song significantly 

increased the phosphorylation of TH in the NCM within 15 min (Matragrano et al., 2012), 

suggesting that hearing song rapidly engages the catecholamine system (Maney, 2013). There is 

also an increase in the co-localization of TH and ZENK in the locus coeruleus (LoC), where 

catecholamines are synthesized, in song-exposed female zebra finches when compared to those 

exposed only to silence (Lynch, Diekamp et al. 2012). TH labeling density in the VTA and VMH 

are positively related to the amount of courtship behavior demonstrated by the partner (Alger, 

Juang et al. 2011).  TH densities in the POM and VMH significantly explained clumping 

behavior (Alger, Juang et al. 2011), which is initiated by the female and is a clear sign of pair 

bonding (Zann 1996).  Taken together, these studies demonstrate the importance of 
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catecholaminesin auditory and reward areas for song perception and mate choice in female zebra 

finches. 

Hypothesis for Ch.4:  Creating a social relationship, such as a monogamous pairbond, will 

increase activation of noradrenergic receptors in song and auditory regions of both male and 

female zebra finches.  

Despite evidence of DA’s role in social relationships, the catecholamine norepinephrine 

(NE) may also play a role, particularly in the zebra finch.  In voles, the nonapeptide system 

appears to work in concert with the dopaminergic system to facilitate pairing (Aragona and 

Wang 2009). However, my own research has shown that these findings do not generalize to 

zebra finches (Lowrey & Tomaszycki, in prep.). Instead, research from our lab suggests that 

norepinephrine (NE) plays an important role in pair bonding in the zebra finch (Vahaba, Lacey, 

& Tomaszycki, 2013).  Thus, zebra finches and prairie voles appear to share common 

nonapeptide mechanisms, but divergent catecholaminergic mechanisms.  Therefore, NE may be 

a more likely candidate in the formation of the zebra finch pairbond than DA and this possibility 

should be investigated. 

The physiology and function of the noradrenergic system appears to be conserved across 

vertebrate species (Smeets and González 2000), however, the brain of songbirds contains 10 

times the amount of NE compared to mammals (Barclay and Harding 1988; Waterman and 

Harding 2008), suggesting that NE may play a larger role in birds than in mammals.  NE 

receptors are present in song regions [HVC, RA, LMAN, and Area X], areas that project to the 

song system [VTA and the SNc], as well as auditory region (NCM), the hippocampus (Hp), the 

PVN, and areas that make up part of a social behavior network  (Barclay, Harding et al. 1996; 
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Mello, Pinaud et al. 1998; Newman 1999; Riters and Ball 2002; Cornil, Castelino, & Ball 2008; 

Velho, Lu et al. 2012).  Given the importance of NE in reward, motivation, decision making, 

learning, and memory as well as its prevalence in the brain of the zebra finch, NE likely plays a 

role in courtship and pair-bonding in both sexes (Vahaba, Lacey , & Tomaszycki, 2013).  

The Noradrenergic System 

NE plays an important role in the regulation of sensory responsiveness across behavioral 

states (Castelino and Schmidt 2010).  NE cell bodies are localized to the LoC, and NE neurons 

show elevated tonic firing rates during vigilant, aroused, or attentive states and decreased activity 

during low states of vigilance (Berridge and Waterhouse 2003).  NE activity in the LoC has been 

related to the regulation of sleep, depression, and other behavioral state dependent disorders 

(Castelino and Schmidt 2010).  Activity in the LoC has been related to a wide array of behaviors 

including stress, reproduction, and aggression (Berridge and Waterhouse 2003).  NE has also 

been associated with learning (Hu, Real et al. 2007) and memory (Davis and Squire 1984, Sarter 

and Markowitsch 1985).  There is even recent evidence that NE works on microglia, astrocytes, 

and many neurons to improve overall activity of the central nervous system [see (O'Donnell, 

Zeppenfeld et al. 2012) for a review].  Despite the large amount of research linking NE to these 

behaviors, there is very little research on the role of NE in social behaviors, such as the 

formation of pair relationships. 

Norepinephrine in the Avian Song System 

The songbird auditory pathway is heavily innervated by neuromodulatory inputs. Fibers 

immunopositive for dopamine beta-hydroxylase (DBH), which catalyzes dopamine to NE, 

innervate the auditory regions in white-throated sparrows and zebra finches (Matragrano et al., 
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2011; Mello et al., 1998).  These DBH-ir fibers likely originate from the LoC, which clearly 

innervates the auditory forebrain, thalamus, and midbrain in pigeons (Kitt and Brauth, 1986). In 

the zebra finch, DBH-ir cells are abundant in the LoC, HP, VTA and SNc (both areas are 

involved in motor control, learning, and motivation) (Mello, Pinaud et al. 1998; Gale and Perkel 

2006).  DBH-ir fibers have also been found in the VTA and SNc innervating Area X (Castelino, 

Diekamp et al. 2007).  DSP-4, a specific noradrenergic neurotoxin, significantly reduces the 

level of DBH-ir in HVC and RA and reduces both TH-ir and DBH-ir levels in Area X (Castelino 

and Ball 2005).  Waterman and Harding (2008) demonstrated that DSP-4 treatment did not affect 

NE function in the hypothalamus (including PVN and POM).  However, the number of DBH-ir 

cell bodies was decreased in treated males in the LoC and VTA (Waterman and Harding 2008).  

These findings indicate an important role for NE in the avian song system and associated areas. 

Norepinephrine and Courtship Behavior 

NE plays a role in directed song and other courtship behaviors. High rates of NE turnover 

have been found in Area X after exposure to a female (Barclay and Harding 1988), indicating 

that this area is important for motivated courtship behaviors, such as directed singing. There is 

evidence that NE modulates activity in brain areas involved in the social behavior network, 

learning, and motivation.  
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In the European starling, a seasonal breeder, alpha-adrenergic receptor (ADRA2) levels 

are higher in the POM after singing, regardless of testosterone level or season (Heimovics, 

Cornil et al. 2011).  Collectively, this evidence demonstrates NE involvement in not only the 

production of song, but the motivational aspects of courtship, given its presence in areas 

important for learning and memory and the social behavior network. 

Norepinephrine and Female Mate Choice 

The NCM and CMM play an important role in song perception and mate choice in female 

zebra finches.  ZENK is rapidly induced in the NCM and CMM in both female canaries and 

zebra finches in response to conspecific song versus other auditory stimuli (Mello, Vicario et al. 

1992), indicating that NCM and CMM both play a role in song evaluation.  There is evidence 

that NE is modulating this song evaluation in the NCM and CMM.  Long songs, which are 

preferred by female zebra finches, increased levels of DBH-ir in the NCM compared to short 

songs (Sockman & Salvante, 2008). Studies show that blocking NE also affects female song 

perception and mate choice.  Female zebra finches normally prefer complex conspecific male 

songs, but treatment with DSP-4 abolishes this preference (Vyas, Harding et al. 2008). Treatment 

of female canaries with DSP-4 results in reduced ZENK expression in the NCM and CMM 

(Lynch and Ball 2008) and a decrease sexual responsiveness to hearing conspecific male song 

(Appeltants, Del Negro et al. 2002).  ADRA1d is the most prevalent noradrenergic receptor in 

the NCM and was found in more song-responsive cells in the NCM than other receptor types 

(Velho et al. 2012).  These studies indicate that the auditory region NCM and CMM are 

important for female song recognition and that this behavior is mediated by NE action.   
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Administrations of DSP-4 have been shown to abolish the behavioral effects of NE on 

courtship behaviors.  DSP-4 injections in male zebra finches cause a significant increase in 

ZENK expression in Area X associated with directed song (Castelino and Ball 2005).  

Administration of DSP-4 resulted in treated males taking longer to sing and performing fewer 

song bouts and courtship displays, but all other female-directed behaviors were unaffected 

(Barclay, Harding et al. 1996).  There is also evidence from our lab that DSP-4 treatment has a 

significant effect on courtship, pairing, and female choice.  Using a two choice paradigm, control 

females has a clear preference for control males versus DSP-4 treated males, while DSP-4 

treated females displayed no preference (Vahaba, Lacey, & Tomaszycki, 2013). In an aviary 

setting, DSP-4 males demonstrated less directed singing than control males (Vahaba, Lacey, & 

Tomaszycki, 2013), which is likely the cause of the preference demonstrated by untreated 

females for untreated males, as they were more likely to engage in directed singing, an important 

courtship behavior.  DSP-4 treated females displayed more clumping behavior during that first 

two days of testing than control females (Vahaba, Lacey, & Tomaszycki, 2013) and, combined 

with their lack of preference in the two choice paradigm, suggests that DSP-4 affects female 

choice, perhaps making females less able to assess quality mates (i.e. making them less picky).  

This is likely, given the evidence that DSP-4 affects female song preference (Appeltants, Del 

Negro et al. 2002; Vyas, Harding et al. 2008).  Overall, treatments increased the latency to form 

a pair relationship in males, and decreased the likelihood to pair in both sexes (Vahaba, Lacey, & 

Tomaszycki, 2013).  Combined with the molecular evidence discussed previously, this 

behavioral evidence strengthens the argument that NE is playing a role in not only song 

production, but courtship behaviors in males and mate choice in females. 
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Hypothesis for Ch.5:  OT modulates expression of noradrenergic mRNA expression in both male 

and female zebra finches and effects social choice in both sexes.  

I hypothesize that OT modulates the noradrenergic system by increasing the level of 

alpha-adrenoceptor (ADRA) mRNA. A similar effect has been reported in rodents in which 

subchronic treatment with OT increased the responsiveness of ADRA2 to an alpha2 agonist in 

the hypothalamus, amygdala, paraventricular thalamic nucleus (Diaz-Cabiale et al. 2000), and 

the LoC (Petersson et al., 1998).  However, this hypothesis has not been tested in an accepted 

model of monogamous pair bonding or in birds.  The nonapeptides originate in the PVN.  

Efferent projections extend to the LoC, LS, and VTA in avian species (Korf 1984).  From the 

LS, VT projections extend to the BST and from there, the periaqueductal grey (PAG), indicating 

that VT can easily influence the social behavior network of brain regions (Goodson 2005; 

Goodson, Rinaldi, & Kelly, 2009).  The VTA projects to several song areas, including Area X, 

HVC, and RA (Castelino and Ball 2005).  Taken together, this evidence shows that nonapeptides 

have widespread influence over areas in the zebra finch brain important in courtship and pairing 

behaviors in both sexes.   

Little is known about the mechanisms controlling the interaction between the 

nonapeptide and noradrenergic systems in the zebra finch brain, however, there is evidence of 

such a relationship in rodents (Diaz-Cabiale et al. 2000; Petersson et al., 1998).  However, this 

hypothesis has not been tested in an accepted model of monogamous pair bonding. I seek to 

determine whether this same interaction between OT and NE mediates the pairing process in 

zebra finches. 
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The noradrenergic system has been well studied in the brain areas controlling song in the 

male zebra finch.  The density of ADRA2 receptors in the song system is also higher in males 

than in females (Riters & Ball 2002).  ADRA2 are located in Area X (Cornil, Castelino, & Ball, 

2008; Riters & Ball, 2002), LMAN (Cornil, Castelino, & Ball, 2008; Riters & Ball, 2002), HVC 

(Cornil, Castelino, & Ball, 2008; Heimovics et al., 2011; Riters & Ball, 2002), and RA (Cornil, 

Castelino, & Ball, 2008; Heimovics et al., 2011; Riters & Ball, 2002).  However, nonapeptide 

receptors are only present at extremely low levels in the song system (Leung et al. 2011). 

Therefore, I hypothesize that MT (originating in the PVN) is released in response to 

courtship behaviors, specifically directed song, and increases the level of ADRA2c mRNA in 

male zebra finches, which is the most prevalent receptor class within the song system (Velho et 

al., 2012). 

In female zebra finches, who do not sing, the evaluation of male directed song is an 

extremely important factor in the formation of a pair bond (Riebel, 2000; 2003; Zann, 1999; 

Tomaszycki & Adkins-Regan, 2005).  The auditory brain regions NCM and CMM are where this 

evaluation takes place.  ADRA1d is the most prevalent receptor in the NCM and was found in 

more song-responsive cells in the NCM than other receptor types (Velho et al. 2012).  OT 

receptors have also been found in the NCM and CMM (Leung et al. 2011).  Therefore, I 

hypothesize that MT (originating in the PVN) is released in response to courtship behaviors and 

increases the level of ADRA1d mRNA in auditory regions of female zebra finches. 
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Table 1.1. A full list of brain area abbreviations in the zebra finch. 

Full Name Abbreviation 

Sensorimotor Pathway  
letter-base proper name HVC 
robust nucleus of the arcopallium RA 

Anterior Forebrain Pathway (AFP)  
Area X Area X 
lateral magnocellular nucleus of the anterior nidopallium LMAN 

Auditory Areas  
caudal medial mesopallium CMM 
caudal medial nidopallium NCM 

Vertabrate Social Network  
bed nucleus of the stria terminalis BSTm 
lateral septum LS 
periaqueductal or central grey PAG 
medial preoptic nucleus POM or POA 
ventromedial hypothalamus VMH 

Catecholamine Areas  
hippocampus HP 
locus coeruleus LoC 

nucleus accumbens Ac 
sunstantia nigra pars compacta SNc 
ventral tegmental Area VTA 

Nonapeptide Production  
paraventricular nucleus of the hypothalamus PVN 
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Figure 1.1. A diagram representing proposed hypotheses. 
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CHAPTER 2 - THE FORMATION AND MAINTENANCE OF SOCIAL 

RELATIONSHIPS INCREASES NONAPEPTIDE mRNA IN ZEBRA FINCHES OF 

BOTH SEXES                                                                                           

 The nonapeptides oxytocin (OT) and vasopressin (AVP) are widely implicated in social 

behavior (Donaldson & Young, 2008; Goodson & Thompson, 2010; Young & Wang, 2004). In 

particular, pharmacological manipulations demonstrate that OT and AVP regulate pairing 

behavior in monogamous prairie voles (Cho, DeVries, Williams, & Carter, 1999; Wang & 

Aragona, 2004). Furthermore, monogamous prairie and pine voles can be distinguished from 

polygamous montane and meadow voles in nonapeptide receptor distributions (Lim & Young, 

2006).  Such findings in monogamous voles are often generalized to all species that form pair 

bonds, including humans. Such generalizations are not necessarily warranted, given the diversity 

of behaviors, degree of sociality, and signal modalities (olfactory vs. visual/vocal) across species 

that form pair bonds (Curley & Keverne, 2005; Goodson & Thompson, 2010). Indeed, findings 

on differences in receptor distributions between monogamous and polygamous species do not 

even generalize to mice (Bester-Meredith, Young, & Marler, 1999; Turner et al., 2010).  

Studies on the role of nonapeptides in other monogamous species have yielded mixed 

results. In cotton-top tamarins, interactions between members of a monogamous pair are 

correlated with increased urinary OT in both sexes (Snowdon et al., 2010), but OT antagonists 

(OTAs) do not significantly alter partner preferences in closely related marmosets (Smith, Agmo, 

Birnie, & French, 2010). Similarly, there is no relationship between monogamous behavior and 

nonapeptides in cichlids (Oldfield & Hofmann, 2011). In humans, although OT administration 

has increased many affiliative behaviors, including trust, memories for socially-relevant facial 
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expressions, tactile contact, sex, and thinking about a romantic partner [reviewed in (Bartz & 

Hollander, 2006; Feldman, 2012; Guastella & MacLeod, 2012; Yamasue et al., 2012)], others 

have criticized these findings for not ruling out simpler functions of OT in human behavior, such 

as general anxiety reduction (Churchland & Winkielman, 2012).  Thus, there is converging 

evidence for the role of nonapeptides in social relationships, but not within the context of a pair 

bond. 

The present study examined the relationship between nonapeptides and pairing behavior 

in zebra finches. Studies that have used a forced-choice testing paradigm (placing one female 

and one male together) found no role for nonapeptides in pairing (Goodson, Lindberg, & 

Johnson, 2004; Kabelik, Klatt, Kingsbury, & Goodson, 2009). When using a more naturalistic 

paradigm that allows for a choice of partners (4 females and 4 males housed together), OTAs, 

administered either centrally or peripherally, decrease pair formation in both sexes (Klatt & 

Goodson, 2013; Pedersen & Tomaszycki, 2012).   Thus, experimental evidence suggests that 

nonapeptides play an important role in pairing in monogamous zebra finches, but the testing 

paradigm is important in determining these effects of nonapeptides on pairing behavior.  

Monogamy is common among birds, but the mechanisms of pairing in these species 

remain poorly understood. To further investigate the role of nonapeptides in avian pairing, the 

present study tested the effects of forming pair relationships on mesotocin and vasotocin mRNA 

expression (MT and VT, avian homologues of oxytocin and vasopressin, respectively) in the 

regions that contain these cell populations, the paraventricular nucleus of the hypothalamus 

(PVN, both MT and VT) and the bed nucleus of the stria terminalis (BSTm, VT) (Goodson & 

Thompson, 2010). Very little research has focused on the capacity for social relationships to alter 
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the nonapeptide system. In male prairie voles, AVP mRNA in the BSTm increases after 3 days 

of cohabitation (Wang, Smith, Major, & De Vries, 1994) and, in females, OT levels increase in 

the nucleus accumbens in response 4 hours of free access to a male, especially if mating occurs 

(Ross et al., 2009). Increases in nonapeptide mRNA are also evident in other behaviors: paternal 

and maternal behavior, as well as prolonged social isolation, increase AVP and OT mRNA in the 

PVN (Pan, Liu, Young, Zhang, & Wang, 2009; Wang, Liu, Young, & Insel, 2000). 

We examined the number of cells expressing nonapeptide mRNA in both sexes at two 

time points: either 48hr or 2 weeks after pairing. We hypothesized that pairing behaviors in zebra 

finches would increase MT and VT mRNA in the PVN of both sexes relative to both control 

groups, since social manipulations result in an increase in nonapeptide mRNA in other species 

(Pan et al., 2009; Wang et al., 1994; Wang et al., 2000), and the PVN has diverse effects on 

behavior due to the simultaneous secretion of nonapeptides into the bloodstream and the brain 

(Goodson, 2005; Neumann, 2002). Furthermore, we chose to examine VT mRNA in the BSTm, 

since not only does this region secrete VT, but VT protein expression in this region is associated 

with male courtship behavior and positive social stimuli in zebra finches (Goodson & Kabelik, 

2009; Goodson, Rinaldi, & Kelly, 2009). Furthermore, the BSTm heavily projects to the lateral 

septum (LS), a region implicated in a variety of socio-sexual behaviors (Goodson et al., 2009; 

Goodson & Thompson, 2010; Goodson & Wang, 2006; Newman, 1999). Thus, we hypothesized 

that pairing would also increase VT mRNA in this region, but that the effects may be more 

pronounced in males than in females, since AVP/VT protein expression is higher in the BSTm of 

males compared to females across a variety of species (De Vries & Panzica, 2006).  
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We had two competing hypotheses. First, we hypothesized that, if zebra finches are more 

like prairie voles, increases in nonapeptide mRNA would be evident in the 48hr (pair formation) 

group, since cohabitation with a female over this time period increases vasopressin mRNA in 

male prairie voles (Wang et al., 1994). Pair maintenance is rarely studied, but some research in 

zebra finches and in prairie voles suggests that the mechanisms may be different (Aragona et al., 

2006; Tomaszycki & Adkins-Regan, 2006). Thus, for our 2 week group, we sought to determine 

if similar increases in nonapeptide mRNA were evident. Second, if zebra finches differ from 

prairie voles, then we predicted that there would be no differences in nonapeptide mRNA 

expression between paired and unpaired animals. 

To better understand which behaviors predicted increases in nonapeptide mRNA, we 

used multiple linear regression analyses, similar to previous studies which have correlated 

behavior with protein expression of neurotransmitters or urinary concentrations of peptides 

(Alger, Juang, & Riters, 2011; Snowdon et al., 2010). When considering the relationship 

between behavior and nonapeptide expression, we based our hypotheses on our view of pairing 

as a 3-step process: male courtship (song), female mate choice (based on song perception, which 

causes the female to initiate contact), and pairing in both sexes (which is identified by contact 

exclusivity between two animals). Thus, we hypothesized that singing in males and pairing 

behaviors in females would be more likely to predict variations in nonapeptide mRNA.  

Method 

Subjects 

 Sixty-four subjects (32 animals of each sex) were adult wild-type zebra finches 

(Taeniopygia guttata) raised in social aviaries between the ages of 90 days and 3 years. Subjects 
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in the pairing group (N = 24) were allowed to pair for either 48hr or 2 weeks. This resulted in 12 

strong pairs (see section on Formation of Pairs for more information on how pairs were 

determined). To control for the effects of the testing environment, animals who exhibited no 

pairing behavior were included as controls (see Table 1). To control for the possibility that the 

animals that did not pair were deficient in some way, an additional 12 subjects (6 of each sex) 

were derived from same-sex aviaries and not given the chance to pair. Due to tissue damage, 1 

paired male and 1 control male were excluded from the analyses (see Table 1 for final animal 

numbers). All subjects, regardless of pairing group, were separated from their parents at day 50 

post-hatching and housed in same-sex aviaries until the start of the experiment. Subjects 

appeared to be in good health and had not previously formed a pair relationship. Animals were 

maintained on a timed 12:12hr light—dark cycle in a temperature (24°C) and humidity (50%) 

controlled room. Seed and water were provided ad libitum. Animals were also supplemented 

with hard-boiled chicken egg and calcium-enriched grain (Simple System Breeder Crumb 5-Day 

Product, The Bird Care Company) twice per week.       

Housing 

 During pairing tests, subjects were housed in 91.4 ×76.2 × 76.2 cm observation cages. 

Each cage contained a water dish, food dish, grit box, perches, four empty nest boxes, and 

nesting materials.    

Formation of Pair Relationships 

 Four birds of each sex were placed into aviaries and allowed to pair for two time periods: 

either 48hr or 2 weeks. These two time points were chosen because most animals pair within 

48hr (Silcox & Evans, 1982), and 2 weeks is enough time to form a solid pair relationship 
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(Tomaszycki & Adkins-Regan, 2006) without the confound of parenting behavior. In no cases 

were eggs or nestlings produced. Subjects from the unpaired and 2 paired groups were derived 

from a total of 8 cohorts. Birds exposed to the pairing paradigm were observed for 30 minutes on 

the first day: 15 minutes between 11:00 and 12:00hr and then again between 13:00 and 15:00hr. 

This was to determine if pairing occurred on the first day, since pairing can occur quickly (Silcox 

& Evans, 1982). We then observed birds for 15 minutes on the second and third days between 

11:00 and 12:00hr. Overall pairing and courtship behaviors (see Table 2) were recorded as in our 

earlier work (Pedersen & Tomaszycki, 2012; Smiley, Vahaba, & Tomaszycki, 2012; Tomaszycki 

& Adkins-Regan, 2005; Vahaba, Lacey, & Tomaszycki, 2013). Observers recorded behaviors 

using a stopwatch and premade observation sheets. All observers (N=6) were trained to a high 

degree of inter-observer reliability (>95%) before the start of observations and we periodically 

checked inter-observer reliability to insure that this high degree was maintained.  

 Pairing status was assessed using an association index, in which a subject was considered 

paired if more than 75% of the subject’s pairing behaviors were with one partner relative to other 

opposite-sex animals (Mabry, Streatfeild, Keane, & Solomon, 2011).  Only animals that paired 

by day 2 and were paired with the same animal on day 3 were used in subsequent analyses. Once 

paired, subjects in the 2 week group were observed three times per week on Monday, 

Wednesday and Friday, between 11:00 and 12:00hr, until 2 weeks post-pairing. Only animals 

that maintained the same partner throughout the 2 weeks were included in the analyses (see 

Table 1 for animal totals).  

Brain Collection 
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 Immediately after observations on the last day of testing for each pairing group, brains 

were collected via rapid decapitation, frozen in cold methyl-butane, and stored at -80°C.  Control 

animals (the ones housed in same-sex aviaries) were not observed and their brains were collected 

using the same protocol. Brains were then sectioned coronally at 20µm on a Leica cryostat and 

mounted directly onto SuperFrost Plus slides (Fisher Scientific, Pittsburgh, PA).  

Probe Preparation  

 Probes were derived from published sequences (VT: Genbank:XM_002190047; MT: 

Genbank:DQ213341). These sequences are highly homologous (81-85%) to corresponding genes 

in the chicken. MT was obtained as a glycerol stock from Erich Jarvis’s laboratory (Duke 

University). Plasmid DNA was isolated using Wizard Plus Minipreps (Promega, Madison, WI). 

To obtain T3 (anti-sense) & T7 (sense) probes, we used a Qiagen Maxi Prep kit (Valencia, CA), 

and linearized the templates using the restriction enzymes XhoI (T3, anti-sense) and NotI (T7, 

sense). A cold transcription reaction was performed to confirm product quality of the correct 

size. 

We developed primers for VT using the NCBI primer tool (Forward = 

TGCTCTCCGGCAGTGCATGC; reverse = GCTGTCCATGGCGCACGTCT, resulting in a 235 

bp product that was located on exon 2, including base pairs 129-144 of the total VT sequence), 

and conducted reverse-transcribed PCR (#12574-035, Invitrogen, Carlsbad, CA) per 

manufacturer’s instructions on isolated RNA to obtain the DNA. According to the NCBI 

database, the resulting VT sequence had no alignment with MT, nor did it have the potential for 

other off-target effects. The resulting products from both MT and VT were sequenced using 

central facilities (MT: Michigan State University; VT: Wayne State University) and specificity 
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for zebra finch MT and VT were confirmed using the BLASTn tool on the NCBI website. Both 

probes were prepared using Roche Applied Science DIG RNA Labeling kits according to 

manufacturer’s instructions (catalog # 11175025910, Indianapolis, IN). 

Dot Blot Assay 

 To determine ideal probe concentrations, we conducted a dot blot assay as in previous 

work (Patel et al., 2012). Briefly, the probes were serially diluted (1:10, 1:100 and 1:1,000) in 

RNase-free water and spotted onto a charged nylon membrane (Millipore, Billerica, MA, USA). 

DIG incorporation was assessed after incubating with a 1:1500 dilution of alkaline phosphatase 

conjugated anti-digoxigenin. Probe signal was developed in alkaline phosphatase buffer (0.1M 

NaCl, 0.05 MgCl2, 0.1 M Tris pH 9.5, 0.1% Tween 20) with NBT/BCIP (Roche Applied 

Science, Indianapolis, IN). The highest concentration that yielded a detectable spot was then 

used on trial tissue. We confirmed that this concentration (1:1000 for both MT and VT) yielded 

specific staining with no background (see Figure 1).  

In Situ Hybridization 

 Fluorescence in situ hybridization was then conducted as in our earlier work (Thompson, 

Dzubur, Wade, & Tomaszycki, 2011; Tomaszycki & Dzubur, 2013). Slides were fixed with 3% 

paraformaldehyde, acetylated, dehydrated, and air dried. Hybridization occurred at 55°C 

overnight with 1:1000 concentration of MT or VT probe in hybridization buffer. After a series of 

washes, slides were incubated in 0.3% hydrogen peroxide in TNT buffer for 10 minutes, and 

blocked in TNB Buffer for a half hour.  Slides were then incubated in the secondary antibody 

(1:100, Anti-DIG-POD, #11207733910, Roche Applied Science, Indianapolis, IN) for 2hr, 

followed by 30 minutes in a tyramide-conjugated fluorophore (1:100, TSA kit #22, Alexa 488, 
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Invitrogen, Carlsbad, CA). Finally, slides were cover-slipped with Slow Fade (#S36937, 

Invitrogen, Carlsbad, CA), cured overnight, and sealed with nail polish. 

Quantification 

 Slides were analyzed using a Nikon Eclipse 80i microscope and Nikon Elements 

Software (AR 3.0). An observer (EML), who was blind to pairing groups and sex, quantified the 

number of cells (by hand, using the program which allows you to keep track of your counts) in 

each section in each brain area within a 256 x 196 µm box. A standard threshold was applied to 

all slides; only cells with fluorescence levels above this threshold were considered stained for 

MT or VT mRNA. We used a conservative threshold, since we used a tyramide-conjugated 

fluorophore that could result in amplification of background staining. For MT mRNA, the 

number of cells in the PVN was measured. For VT mRNA, the PVN and BSTm were measured. 

These regions were located using adjacent slides stained with thionin. On average, 4 sections 

(representing both left and right hemispheres) were quantified per animal.  

Statistical Analysis 

 All data were analyzed using SPSS Version 19 (SPSS Inc. 2010, Chicago, IL). The mean 

number of cells expressing MT and VT for each subject was log-transformed to normalize the 

data. The effects of Sex and Treatment (independent variables) on the number of cells expressing 

MT and VT mRNA in the PVN and BSTm (dependent variables) were analyzed using a Sex X 

Treatment MANOVA with Bonferroni corrections where appropriate. Effect sizes (η2) are also 

reported.  

 The relationship between pairing and courtship behaviors and MT and VT mRNA was 

analyzed using multiple linear regressions.  Behavioral data were averaged across days and then 
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log-transformed to achieve normality.  MT and VT cell numbers were averaged across each 

hemisphere in each section and similarly log-transformed. To test the ability of behaviors to 

predict the nonapeptide expression, MT and VT in the PVN (or VT in the BSTm) were entered 

as dependent variables, and behaviors (directed singing, clumping, nesting, and allopreening) 

were entered as independent variables in the multiple linear regression.  Copulations and tail 

quivers occurred too infrequently to permit inclusion in the analyses. The multiple linear 

regressions were run for each sex separately.  Stepwise, backward, and forward multiple linear 

regressions were run; only models with the highest adjusted R
2
 values are presented, as in earlier 

work (Alger et al., 2011). All models and associated p-values are reported in Tables 3 and 4. 

Results 

Effects of Sex and Pairing on the Number of Cells Expressing MT and VT mRNA in the PVN and 

BSTm 

The overall Wilks’ Lambda revealed a main effect of Pairing (F9,76= 14.14, P < 0.001, η
2
 

= 0.55) and Sex (F3,31= 5.71, P = 0.003, η
2
 = 0.36), but no Sex X Pairing interaction (F9,76 < 1, η

2
 

= 0.08). The effect of Pairing was statistically significant for MT and VT in the PVN (MT: F3,33 

= 70.48, p < 0.001, η
2
 = 0.87; VT: F3,33 =15.13, p < 0.001, η

2
 = 0.58; see Figures 2 and 3), as 

well as VT in the BSTm (F3,33 = 3.36, p = 0.03, η
2
 = 0.23; see Figure 4). Specifically, in the 

PVN, both paired groups (48hr and 2 weeks) had a higher number of cells expressing MT and 

VT than did either of the control groups. The paired groups did not differ significantly from each 

other, nor did the control groups. In the BSTm, animals paired for 48hr had a higher number of 

cells expressing VT than did animals that were not given the opportunity to pair.  
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The overall sex difference proved only to be significant for VT mRNA in the BSTm 

(F1,33 =18.14, p < 0.001, η
2
 = 0.36; Figure 4). Regardless of pairing status, males had a higher 

number of cells expressing VT in the BSTm than did females. There were no sex differences in 

the PVN (MT: F1,33<1, η
2
 = 0.02, Figure 2 ; VT: F1,33<1, η

2
 = 0.03, Figure 3).     

Contributions of Behavior to Variations in MT and VT mRNA 

Behaviors differentially predicted the number of cells stained for MT and VT mRNA in 

the PVN (all results presented in Table 3).  In males, directed singing significantly predicted 

variations in the number of cells expressing MT mRNA.  Directed singing and clumping best 

explained the number of cells expressing VT mRNA in the PVN (see Table 3). In the BSTm, 

variations in VT mRNA were best explained by a model including singing, allopreening, and 

clumping (the latter contribution was not statistically significant, see Table 4).  

In females, a model including the pairing behaviors clumping and allopreening (the latter 

was not statistically significant) predicted variations in MT mRNA (see Table 3). No behaviors 

predicted variability in the number of cells expressing VT mRNA in either the PVN or BSTm 

(see Table 4). 

Discussion 

Effects of Pairing and Sex on Nonapeptide mRNA 

 The present study supports our first hypothesis, that pairing increases nonapeptides in 

both the PVN and BSTm of zebra finches of both sexes. To our knowledge, this is the first study 

to demonstrate pairing-related increases in nonapeptide mRNA in any avian model. OTAs 

decrease pairing in zebra finches (Klatt & Goodson, 2013; Pedersen & Tomaszycki, 2012). 

Taken together, these studies suggest that nonapeptides play an important role in zebra finch 
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pairing: nonapeptides affect pairing and, in turn, pairing affects nonapeptides. If this bi-

directional relationship is true, then our effects of pairing on VT mRNA are surprising, since 

earlier work has found no effects of vasotocin antagonists on pairing (Goodson et al., 2004; 

Kabelik et al., 2009). 

In the PVN, pairing, regardless of length, increased the number of cells expressing 

nonapeptide mRNA. This suggests that forming and maintaining pair-bonds may result in 

elevated nonapeptide mRNA in the PVN. The mechanisms of pair maintenance receive are not 

well understood in any species (Aragona et al., 2006). In prairie voles, length of pairing (3-21 

days) had no effect on AVP-ir in the paraventricular nucleus of the thalamus (Bamshad, Novak, 

& de Vries, 1994). Further research on the role of nonapeptides in pair maintenance is definitely 

warranted. 

Pairing for 48hr also increased VT mRNA in the BSTm relative to control animals. 

Similar results were found in prairie voles; males housed with a female for 48hr had higher 

levels of VT mRNA in the BSTm than did males housed without one (Wang et al., 1994).  

Unpaired animals had VT mRNA cell counts in the BSTm that did not differ significantly from 

paired animals. Exposure to opposite-sex individuals and courtship behaviors could explain these 

findings. Presenting a male with a female increases cells immunoreactive for both c-Fos (an 

immediate early gene) and VT (Goodson et al., 2009; Goodson & Wang, 2006). Thus, the BSTm 

may be more linked to courtship or the very early stages of pairing.  

Males, regardless of treatment, had higher VT mRNA in the BSTm than did females, 

consistent with findings on VT protein expression across many species (De Vries & Panzica, 

2006; Kimura, Okanoya, & Wada, 1999) and VT mRNA in the chicken, in which females 
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expressed virtually no VT mRNA in the BSTm (Jurkevich, Barth, & Grossmann, 1997). Thus, 

the present study extends these findings to a sex difference in VT mRNA in the BSTm of the 

zebra finch.   

Pairing-related Behaviors Predict Variations in Nonapeptide mRNA 

We conceptualized pairing as a 3-step process: male courtship, female mate choice, and 

clumping (direct physical contact) in both sexes. We used multiple linear regressions to 

determine which behaviors best explained variations in nonapeptide mRNA within each sex.  

Males: Singing Predominantly Predicts Variations in Nonapeptide mRNA 

We hypothesized that directed singing would explain variations in nonapeptide mRNA in 

males. This was indeed the case. Directed singing was included in all 3 models (MT and VT 

mRNA in the PVN, and VT mRNA in the BSTm). As stated above, the link between VT in the 

BSTm and male singing is no surprise—this link has been found when examining VT protein in 

this same region. The link between directed singing and both VT and MT mRNA in the PVN is, 

to our knowledge, novel. The functional consequences of this singing-related increase in 

nonapeptide mRNA in the PVN of males warrants further investigation. 

Singing was the only behavior that explained variations in MT mRNA in the PVN of 

males. This could indicate that courtship, and not pairing, increases MT mRNA in males. Pairing 

behaviors did, however, explain variations in VT mRNA in both the PVN and BSTm, but only 

one pairing behavior was significant in each model. In zebra finches, knockdown of VT 

production in the septum (which receives dense projections from the BSTm) decreases social 

contact in males (Kelly et al., 2011), which could suggest a role for VT in this component of 



www.manaraa.com

36 

 

 

pairing. Nonetheless, in males, our findings support our hypothesis that courtship singing is 

highly important for changes in the nonapeptide system. 

Females: Pairing-related Behaviors Predict Variations in Mesotocin mRNA 

As predicted, findings in females differed from those in males. First, directed singing 

received by females did not explain variations in nonapeptide mRNA. We hypothesized that the 

second step in the pairing process would be female mate choice through song perception. 

However, it is likely that song quality is just as important as is song quantity (measured in the 

present study), as our previous research suggests (Tomaszycki & Adkins-Regan, 2005). 

Instead, pairing behaviors in females were more predictive of variations in nonapeptide mRNA, 

specifically MT mRNA, than were courtship behaviors. A model including clumping and 

allopreening predicted variations in MT mRNA in the PVN of females. This suggests that 

pairing may be more important for changes in the mesotocin system of females than of males.  

In contrast, no behaviors predicted variations in VT mRNA in either brain region of females. The 

effect in the BSTm may not be so surprising (although there were no significant Sex X 

Treatment interactions), since VT mRNA in females was low. However, the findings in the PVN 

are puzzling, since there were no sex differences in VT mRNA in this region. It is possible that 

behaviors, not quantified in this study, account for these effects.   

Methodological Considerations 

Previous studies have examined VT-ir in the BSTm of male zebra fiches. Such studies 

have documented more cells expressing the VT protein in the BSTm than what we present here. 

There are multiple reasons for these discrepancies. First, studies of VT-ir in male zebra finches 

have documented VT-ir numbers in the BSTm that range from 15-150 (Goodson et al., 2009; 
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Kabelik, Morrison, & Goodson, 2010; Kimura et al., 1999), which suggests that there is 

tremendous variability in the number of VT-ir cells reported. In one of these studies (Kabelik et 

al., 2010), each measurement consisted of the total number of cells in both hemispheres, whereas 

here, we present the average across one counting frame within one hemisphere. Furthermore, we 

sectioned brains at 20 µm, whereas previous studies have sectioned brains at 40 µm (Kabelik et 

al., 2010). Thicker sections can lead to a greater numbers of cells. Finally, there is a vast 

literature that documents mismatches between mRNA and protein expression (Chen et al., 2002; 

Greenbaum, Colangelo, Williams, & Gerstein, 2003; Press et al., 2008; Wada et al., 2006). 

Indeed, studies in yeast have found up to a 20-fold difference in the amount of protein and its 

corresponding mRNA (Gygi, Rochon, Franza, & Aebersold, 1999). 

Nonetheless, our differences between the sexes match those of previous studies 

examining VT protein expression in the BSTm (Kabelik et al., 2010), and suggest the same 

correlation between VT in the BSTm between males who court and those who do not (Goodson 

et al., 2009). Thus, despite differences in numbers, our correlations between VT and behavior are 

similar to studies of VT protein expression in this region. Future studies should employ testing 

paradigms from the present study and measure VT and MT protein expression to determine the 

functional outcomes of these changes in mRNA. 

We measured mRNA as a proxy for nonapeptide availability. We chose this method 

because it relies on zebra finch-specific probes. However, there is the possibility that an increase 

in nonapeptide mRNA does not cause an actual increase in the release of nonapeptides; it could 

potentially reflect an increase in the accumulation of nonapeptides in the regions we examined 

(Neumann, 2002). Future research should focus on how pairing alters nonapeptide release or 
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how it affects activity at nonapeptide receptors. Furthermore, while we can correlate pairing with 

nonapeptide mRNA, we cannot exclude the possibility that an initial increase in nonapeptide 

mRNA at the time of aviary formation facilitated pairing. Unfortunately, it is impossible to 

measure nonapeptide mRNA at two time-points in the same animal. 

Finally, we chose a more naturalistic paradigm, which is good for investigating natural 

choice, but limits experimental control. Pairing is a complex process that involves a wide variety 

of behaviors. While we have attempted to associate particular behaviors with variations in 

nonapeptide mRNA in particular brain regions, we do not know the extent to which each 

behavior is necessary or sufficient to account for our observed effects. Future research could test 

this using more controlled experimental conditions to separate out singing, song perception, and 

pairing behaviors.  

Conclusions 

 In summary, our results provide strong evidence that pairing increases nonapeptide 

mRNA in the PVN and BSTm of adult zebra finches of both sexes, but that different behaviors 

predict variations in nonapeptide mRNA within each sex. In males, singing predicted variations 

in nonapeptide mRNA, whereas in females, pairing behaviors predicted variations in MT mRNA 

only. Therefore, although pairing caused similar increases in nonapeptide mRNA in both sexes, 

these increases may be driven more by courtship in males and by pairing in females. Our 

research contributes a further understanding of the role of nonapeptides in monogamous pair 

relationships. 

  

 



www.manaraa.com

39 

 

 

 

 

 

 

 

Table 2.1. Number of subjects, by treatment group and sex, included in a study of the effects of 

pairing on mesotocin and vasotocin mRNA in adult zebra finches. 

 

 2 week  48hr Unpaired  Control  

Male  6  5  4  5  

Female  6  6  3  6  
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Table 2.2. Pairing and courtship behaviors observed in adult zebra finches of both sexes. 

 

Behavior Male- or Female-

Typical  
Duration 

or 

Frequency  

Description  

Singing  Male  Duration  Song directed at a female  

Clumping  Both  Duration  Direct physical contact  

Allopreening  Both  Frequency  Mutual grooming  

Nesting  Both  Duration  Sharing a nest box  

Tail Quiver  Female  Frequency  Rapid shaking of tail feathers  

Copulation  Male  Frequency  Mating  
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Table 2.3. Regression models of courtship and pairing behaviors that explained variations in 

mesotocin (MT) and vasotocin (VT) mRNA in the paraventricular nucleus of the hypothalamus 

(PVN)of zebra finches of both sexes. 
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Table 2.4. Regression models of courtship and pairing behaviors that explained variations in 

vasotocin (VT) mRNA in the bed nucleus of the stria terminalis (BSTm) of zebra finches of both 

sexes. 
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Figure 2.1. Examples  of Mesotocin (MT) and Vasotocin (VT) mRNA in the paraventricular 

nucleaus of the hypothalamus (PVN) of adult male and female zebra finches paired for 48hr or 2 

weeks.  Pictures were taken at low (40X) maginification to demonstrate specificity of staining.  

White outlines indicate the boundaries of the PVN. 

 
 

 
  

Figure 1. Examples of Mesotocin (MT) and Vasotocin (VT) mRNA in the paraventricular 

nucleus of the hypothalamus (PVN) of adult male and female zebra finches paired for 48hr or 2 

weeks. Pictures were taken at low (40X) magnification to demonstrate specificity of staining. 

White outlines indicate the boundaries of the PVN. 
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Figure 2.2. Mesotocin (MT) mRNA in the PVN of paired and unpaired adult zebra finches of 

both sexes. A) Examples of MT mRNA in the paraventricular nucleus of the hypothalamus 

(PVN) of adult male and female zebra finches paired for 48hr, 2 weeks, or unpaired (control). 

400X magnification. B) The mean number of cells stained for MT mRNA in the PVN by pairing 

group and sex. Animals who paired (both for 48hr and 2 weeks) had a higher number of cells 

expressing MT mRNA in the PVN than did animals who did not pair (unpair) or were not given 

the chance to pair (control). There were no sex differences. *indicates significant difference from 

both paired groups at the p < 0.05 level. 
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Figure 2.3. Vasotocin (VT) mRNA in the PVN of paired and unpaired adult zebra finches of 

both sexes. A) Examples of VT mRNA in the paraventricular nucleus of the hypothalamus 

(PVN) of adult male and female zebra finches paired for 48hr, 2 weeks, or control. 400X 

magnification. B) The mean number of cells stained for VT mRNA in the PVN by pairing group 

and sex. Animals who paired (both for 48hr and 2 weeks) had a higher number of cells 

expressing VT mRNA in the PVN than did animals who did not pair (unpair) or were not given 

the chance to pair (control). There were no sex differences. *indicates significant difference 

between groups at the p < 0.05 level. 
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Figure 2.4. VT mRNA in the BSTm of paired and unpaired adult zebra finches of both sexes. A) 

Examples of VT mRNA in the medial bed nucleus of the stria terminalis (BSTm) of adult male 

and female zebra finches paired for 48hr, 2 weeks, or control. 400X magnification. B) The mean 

number of cells stained for VT mRNA in the BSTm by pairing group and sex. Animals paired 

for 48hr had a significantly higher number of cells expressing VT mRNA than did control 

animals (not given the opportunity to pair).*indicates significant difference between groups at 

the p < 0.05 level. 
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CHAPTER 3 - THE ROLE OF CATECHOLAMINES IN COURTSHIP AND 

PAIRBINDING BEHAVIOR OF MALE AND FEMALE ZEBRA FINCHES 

The catecholamine, dopamine (DA), plays a vital role in affiliative behaviors.  Affiliative 

behaviors in animals, such as grooming and tactile contact (Starr & Starr, 1986; Dunbar, 2010), 

positive interactions (Odendaal & Meintjes, 2003) and viewing images of conspecifics (Saif et 

al., 2013) have been shown to increase catecholamine levels.  Therefore, it is likely that 

catecholamines also play a role in the formation of social relationships.  

DA has been implicated in reward (Wise & Rompre, 1989; Berridge & Robinson, 1998; 

Noble, 2000; Shultz, 2010) and sexual behavior (Melis & Argiolas, 1995; Pfaus, Kippin, & 

Centeno, 2001; Dominguez & Hull, 2005). DA receptors are widely distributed throughout the 

limbic system, a neural circuit strongly implicated in reward (Routtenberg, 1968; Missale et al., 

1998; McClure et al., 2004).  Beyond the role of DA in sexual activity, DA also facilitates the 

formation of a partner preference in female prairie voles in the absence of mating (Gingrich et 

al., 2002), indicating that DA is involved in both the social and sexual aspects of pair bonding.  

DA also facilitates pair bonding in male prairie voles (Aragona & Wang, 2009).   

DA has also been associated with courtship behavior, the first step in the pairing process, 

in birds. DA levels are higher in male zebra finches after they engage in directed singing, an 

important courtship behavior (Bharati & Goodson, 2006; Sasaki et al., 2006), and experimentally 

decreasing DA levels results in a decrease in directed signing and other courtship displays in 

males (Harding, 2004; Rauceo et al., 2008). Birdsong is a complex vocal behavior learned during 

early life in a process that is analogous to the learning of human speech (Marler, 1970). Like 

speech, singing is a social behavior and is used by male zebra finches to communicate to the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737460/#B142
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737460/#B142
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larger social group — which can include up to 200 conspecifics (Catchpole & Slater, 1995, 

Zann, 1996).  Zebra finch singing can be divided behaviorally into two types: 'directed' singing is 

highly aroused, is aimed at another bird, and often occurs during the courtship dance, whereas 

'undirected' singing occurs when a finch is either alone or not orienting toward any other bird in 

particular (Hessler & Doupe, 1999).   

Catecholamines are present in brain areas controlling song in male songbirds.  TH-ir 

fibers are present in song areas HVC (letter based name), lateral magnocellular nucleus of the 

anterior nidopallium (LMAN), robust nucleus of the arcopallium (RA) and Area X of male song 

birds (Appeltants, Ball, & Balthazart, 2001; Soha, Simizu, Doupe, 1995, Bottjer, 1993; Castelino 

and Ball, 2005).  DSP-4, a specific noradrenergic neurotoxin, significantly reduces the level of 

DBH-ir in HVC and RA and reduces TH-ir levels in Area X (Castelino and Ball 2005).  DBH 

fibers have also been found in the VTA and SNc, innervating Area X (Castelino, Diekamp et al. 

2007).  Therefore, it is highly likely that catecholamines mediate song production in the male 

zebra finch. 

Catecholamines may further promote social behavior and male song in reward systems, 

such as the caudal portion of the VTA (VTAc). In the zebra finch, DBH-positive cells are 

abundant in the LoC, the site of NE synthesis, as well as regions associated with learning and 

memory, reward and motivation (e.g. VTA and SNc); Mello, Pinaud et al. 1998; Gale and Perkel 

2006).  TH-ir neurons in the VTAc positively correlate with the degree of sociality and 

monogamy in finch species (Goodson, Kabelik, Kelly, Rinaldi, & Klatt, 2009).  Furthermore, 

male singing is positively correlated with TH-ir in the VTAc (Alger, Juang et al. 2011).  There is 

an increase in ZENK in the VTA of males who exhibit singing behavior compared to those who 
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are silent (Lynch, Diekamp, and Ball, 2008).  TH density in the VTA appears to modulate the 

demonstration of courtship behavior in males (Goodson, Kabelik et al. 2009) and increases when 

courtship is reciprocated by a partner (Alger, Juang et al. 2011).  The number of songs produced 

by a male finch is positively correlated with the percentage of TH-positive neurons expressing 

FOS, an IEG, in the VTAc (Goodson, Kabelik et al. 2009).  Courtship reciprocation is also 

related to TH density in the (VMH), an area in the “social behavior network” (Newman, 1999; 

Goodson 2005).   Taken together, this evidence suggests that signing in males, an important 

courtship behavior, is mediated by catecholamines and is a rewarding behavior. 

Hearing song has been shown to affect catecholamines in the brain of female zebra 

finches.  In female white-throated sparrows, playback of male song significantly increases the 

phosphorylation of tyrosine hydroxylase (TH, the rate limiting step in catecholamine synthesis) 

in the NCM within 15 min (Matragrano et al., 2012), suggesting that hearing song rapidly 

engages the catecholamine system (Maney, 2013). Song-exposed females also have increases in 

co-localization of TH and ZENK in the LoC, where NE is synthesized (Lynch, Diekamp et al. 

2012).  Taken together, catecholamine expression in the NCM and CMM is important for song 

perception, and therefore mate choice, in female zebra finches. 

The preponderance of evidence supports a role of catecholamines in courtship in males 

and female perception and choice.  Most studies of pair bonding in birds have emphasized short-

term interaction in a force-choice paradigm (Immelmann et al., 1991; Appeltants, Del Negro et 

al. 2002; Vyas, Harding et al. 2008; Goodson, Kabelik, Kelly, Rinaldi, & Klatt, 2009).  Thus, it 

remains unclear how catecholamines affect the formation of a pair bond in a naturalistic setting.  

The present study investigated the role of forming a monogamous pair bond on catecholamine 
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protein expression (as measured by TH-ir).  ZENK-ir was be used as a proxy measure of 

neuronal activation in the areas of interest. We analyzed song regions [HVC, RA, LMAN, and 

Area X], reward associated areas that project to the song system [VTA and SNc], auditory 

regions [NCM and CMM], and an area in the social behavior network [VMH].  These areas were 

chosen to determine potentially differential mechanisms of catecholaminergic action in song, 

song perception, and social behavior. 

Method 

Subjects 

 Subjects were chosen from adult wild-type zebra finches (Taeniopygia guttata) raised in 

social aviaries. All subjects, regardless of treatment group, were separated from their parents at 

day 50 post-hatching and housed in same-sex aviaries until the start of the experiment.  All 

subjects were analyzed for good health and have not previously formed a pair relationship. 

Animals are maintained on a timed 12:12hr light—dark cycle in a temperature (24°C) and 

humidity (50%) controlled room. Seed and water are provided ad libitum. Animals are also 

supplemented with hard-boiled chicken egg and calcium-enriched grain (Simple System Breeder 

Crumb 5-Day Product, The Bird Care Company) twice per week. 

 Subjects in the pairing group (N = 12) were allowed to pair for 48hr. This continued until 

we had obtained 12 strong pairs in each group (see section on Formation of Pairs for more 

information on how pairs were determined). To control for the effects of the testing environment, 

animals who exhibited no pairing behavior were included as controls in an unpaired group. To 

control for the possibility that the animals that did not pair were deficient in some way, an 
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additional 12 subjects (6 of each sex) were obtained from same-sex aviaries and not given the 

chance to pair.  

Housing 

During pairing tests, subjects were housed in 91.4 ×76.2 × 76.2 cm aviaries. Each aviary 

contained a water dish, food dish, grit box, perches, four empty nest boxes, and nesting 

materials.    

Formation of Pair Relationships 

Four birds of each sex were placed into aviaries and allowed to pair for 3 days. This time 

point was chosen because most animals pair within 24hr (Silcox and Evans, 1982).  Subjects 

were derived from 6 cohorts.  Birds exposed to the pairing paradigm are observed for 30 minutes 

on the first day: 15 minutes between 11:00 and 12:00hr and then again between 13:00 and 

15:00hr. This is to determine if pairing occurred on the third day, since pairing can occur quickly 

(Silcox and Evans, 1982). We then observed birds for 15 minutes on the second between 11:00 

and 12:00hr. Overall pairing and courtship behaviors are recorded as in our previous work 

(Pedersen and Tomaszycki, 2012; Smiley et al., 2012; Tomaszycki and Adkins-Regan, 2005). 

Observers record behaviors using a stopwatch and premade observation sheets. All observers 

(N=2) have been trained to a high degree of inter-observer reliability (>95%) before the start of 

observations, and maintained this degree of reliability throughout the study.   

To determine whether or not subjects were paired, we used an association index, in which 

a subject was considered paired if more than 75% of the subject’s pairing behaviors were with 

one partner relative to other opposite-sex animals (Mabry et al., 2011).  Only animals that paired 

on day 1 and were confirmed as paired on day 3 with the same individual were used in 
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subsequent analyses. Birds were considered to be unpaired if they spent less than 20% of their 

time engaged in courtship behavior over the 3 observation days. 

Brain Collection 

Immediately after observations on the last day of testing for each pairing group, birds 

were sacrificed via rapid decapitation and their brains were rapidly extracted, frozen in cold 

methyl-butane, and stored at -80°C.  The brains of control animals (the ones housed in same-sex 

aviaries), which were not observed, were collected using the same protocol. Brains were then 

sectioned coronally at 20µm on a Leica cryostat and mounted directly onto SuperFrost Plus 

slides (Fisher Scientific, Pittsburgh, PA).  

Immunocytochemistry (ICC) 

Slides were brought to room temperature for approximately 10 minutes in order to 

perform the double-label TH/ZENK ICC.  Slides were fixed with 3% paraformaldehyde, briefly 

rinsed in TBS, and dehydrated in ETOH.  This was followed by three rinses in TBS and 

incubation in 1% H2O2 and 0.3% Triton X in TBS for 10 minutes.  Slides were then rinsed three 

times in TBS and blocked for 30 minutes in 2% normal goat serum and 0.3% Triton X in TBS at 

37°C.  Slides were incubated for 48 hours in primary ZENK antibody (anti-rabbit IgG 1:1000, 

Santa Cruz Biotechnology, #SC52, Santa Cruz, CA) at 4°C.  Slides were rinsed three times in 

TBS and incubated in biotinylated goat anti-rabbit serum (1:250; Vector Laboratories, 

Burlingame, CA) in 2% NGS and 0.3% Triton X in TBS for 1 hour.  Slides were rinsed three 

times in TBS and incubated for 1 hour in avidin-biotin peroxidase reagent (ABC Elite Kit, 

Vector Laboratories, Burlingame, CA).  Visualization of ZENK was obtained by incubation of 

slides for 8 minutes in 3,3’-diaminobenzine (DAB, Sigma Aldrich, St. Louis, MO) in TBS.  
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Slides were rinsed three times in TBS and blocked in 2% normal goat serum for 30 minutes.  

Slides were then incubated overnight in primary TH antibody (mouse anti-TH IgG, 1:1000; 

Chemicon, # MAB318, CITY, STATE) in 2% NGS and 0.3% Triton X in TBS.  Slides were 

rinsed three times in TBS and then blocked in TH secondary (mouse anti-TH IgG, 1:250; Vector 

Laboratories, Burlingame, CA) in 2% NGS and 0.3% Triton X in TBS for 1 hour.  Slides were 

rinsed three times in TBS and incubated for 1 hour in avidin-biotin peroxidase reagent.  After a 

quick rinse in TBS, visualization of TH was obtained by incubation in Vector SG (Vector 

Laboratories, Burlingame, CA) in peroxide and TBS for 10 minutes.  Slides are then rinsed with 

distilled water, quickly dehydrated in ETOH, and coverslipped. 

Quantification 

Regions were quantified using a Nikon Eclipse 80i microscope and Nikon Elements 

Software (AR 3.0). The observers (KM, WL, and EL), who were blind to treatment groups, 

quantified the number of cells in each brain area. For cells containing TH, ZENK, or both TH 

and ZENK, nine brain regions were quantified.  These include the song areas: Area X, LMAN, 

HVC, and RA; the auditory areas CMM and NCM; and areas regulating social behavior and 

reward, VTA, SNc, and VMH.  These regions were located using adjacent slides stained with 

thionin. On average, 3 sections (representing both left and right hemispheres) were quantified per 

animal.  

Statistical Analysis 

All data were analyzed in SPSS v.22 (SPSS Inc. 2013, Chicago, IL). Prior to analysis, the 

mean number of cells expressing TH-ir, ZENK-ir, and co-localization of TH-ir + ZENK-ir across 

regions were log-transformed to achieve normality. In order to examine the several behaviors as 
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repeated measures of courtship, frequency count and duration scales were equated by 

transforming all behavioral data to z-scores.  Two control treatment groups were created: birds 

that remained unpaired despite the opportunity to pair, and those who were housed in same-sex 

aviaries and not allowed to pair.  Differences in immunoreactivity within each region and 

behavior were tested in a 3 (immunoreactivity: TH-ir, ZENK-ir, TH+ZENK-ir) x3 (experimental 

group: Paired, Unpaired, Control) multivariate analysis of variance (MANOVA).  Correlations 

among immunoreactivity measures across brain areas were high (all r = -0.52-0.89), indicating a 

risk of multicollinearity.  Due to the limitations of sample size and multicollinearity across 

regions, separate MANOVA were run by region (Area X, LMAN, HVC, VMH, VTAr, VTAc, 

SNc, CMM, and NCM).  Bonferroni post-hocs were conducted to follow up on significant 

effects.  Finally, because regions of interest differed between the sexes (i.e. Area X, LMAN, and 

HVC were only measured in males and NCM and CMM were only measured in females), 

MANOVAs were run separately for males and females for a total of 15 total models (9 regions in 

males, and 6 regions in females; Area X, LMAN and HVC were not analyzed in females).  Due 

to an inability to adequately sample tissue, 10 unpaired control females displayed damaged tissue 

in areas of interest, resulting in an inadequate sample size.  Two of the female brains were 

sectioned improperly.   Three of the brains were destroyed during handling.  The other  brains 

were misplaced.  To allow for multivariate analyses, the control group in the female birds was 

defined as both unpaired and birds from same-sex aviaries (n = 6).  Measures of cell expression 

in RA were insufficient for statistical analysis and therefore the region was omitted from 

hypothesis testing.  

Results 
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Association between Regional Expression and Pairing in Males 

TH-ir, ZENK-ir, and TH+ZENK-ir in male zebra finches. The effect of Pairing was 

statistically significant for TH+ZENK-ir (p = 0.026) in Area X, but not for TH-ir or ZENK-ir 

expression alone (see Table 1).  As predicted, Bonferroni post hoc tests revealed that the paired 

group had a higher number of cells co-expressing ADRA2c mRNA and ZENK-ir than the 

unpaired group (see Figure 2).   

However, contrary to our hypotheses, there was no significant  relationship between 

pairing and TH-ir, ZENK-ir, or TH+ZENK-ir in song areas LMAN and HVC (see Table 1, 

Figures 2 and 3) or VMH, VTAr, VTAc, or SNc (see Table 1, Figures 4 and 5).  

Association between Regional Expression and Pairing in Females 

TH-ir , ZENK-ir, and TH+ZENK-ir in female zebra finches.  The effect of Pairing was 

statistically significant for ZENK-ir in NCM (p = 0.002), but not for TH-ir or TH+ZENK-ir 

expression (see Table 2, Figure 6 and 7).  As predicted, the Bonferroni post-hoc revealed that the 

paired group had a higher number of fibers expressing ZENK-ir than the unpaired group (p = 

0.002).  However, pairing had no effect in CMM (see Table 2, Figure 6 and 7), which was 

unexpected.   

The effect of Pairing was statistically significant for ZENK-ir and TH+ZENK-ir 

expression in VMH, but not for TH-ir alone (see Table 2, Figure 6 and 7).  The Bonferonni post-

hoc supported out hypotheses, such that the paired group had a higher number of fibers 

expressing ZENK-ir alone (p = 0.004) and a lower number of fibers expressing TH+ZENK-ir (p 

= 0.006) than the unpaired group (see Figures 6 and 7).  
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The effect of Pairing was statistically significant for ZENK-ir in VTAr, such that the 

paired group had a lower number of cells than the unpaired group (p = 0.038; see Table 2, 

Figures 8 and 9), which was the opposite effect we were expecting.  TH-ir and TH+ZENK-ir 

expression were not significant (see Table 2, Figures 8 and 9) 

The effect of Pairing was statistically significant for ZENK-ir and TH+ZENK-ir 

expression in VTAc, but not for TH-ir (see Table 2, Figures 8 and 9).  Contrary to the direction 

we predicted, the paired group had significantly less cells expressing ZENK-ir (p = 0.015) and 

more cells expressing TH+ZENK-ir (p = 0.004) than the unpaired group (see Figures 8 and 9).   

Unexpectedly, there was no effect of Pairing in SNc for TH-ir, ZENK-ir, or TH+ZENK-ir 

(see Table 2, Figures 8 and 9).   

Contributions of Behavior to Variations in TH-ir, ZENK-ir, or TH+ZENK-ir  

Only statistically significant relationships between pairing and molecular expression were 

analyzed using linear regression.  In Area X of males, none of the behaviors significantly 

predicted variations in the number of fibers expressing TH+ZENK-ir co-expression (see Table 

1).  In the NCM of females, clumping and nesting statistically predicted the number of fibers 

expressing ZENK-ir (see Table 1).  In the VMH of females, clumping statistically predicted the 

number of fibers expressing ZENK-ir, but no behaviors statistically predicted TH+ZENK-ir (see 

Table 1).  In the VTAc of females, nesting statistically predicted the number of fibers expressing 

TH+ZENK-ir, but no behaviors statistically predicted ZENK-ir (see Table 1).  In the VTAr of 

females, clumping statistically predicted the number of fibers expressing ZENK-ir (see Table 1). 

Discussion 

TH-ir, ZENK-ir, and co-expression in the male zebra finch  
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Our findings demonstrate significantly more fibers co-expressing TH-ZENK-ir in Area X 

of paired than unpaired males.  High levels of both noradrenergic (Ball & Balthazart, 2007; 

Cornil, Castelino et al. 2008; Castelino, Diekamp et al. 2007; Riters & Ball, 2002) and 

dopaminergic (Appeltants, Ball, & Balthazart, 2001; Soha, Simizu, Doupe, 1995, Bottjer, 1993; 

Castelino & Ball, 2005) receptors have been found in Area X.  This area is active when hearing 

the bird’s own song and is important for online monitoring of song so feedback can be provided 

to other song nuclei for proper song production (Solis, Brainard et al. 2000).  High rates of NE 

turnover have been found in Area X after exposure to a female (Barclay and Harding 1988), 

indicating that this area is also important for motivated courtship behaviors, such as directed 

singing.  

Area X is innervated by noradrenergic fibers from the LoC and dopaminergic fibers from 

the VTA and SNc (Castelino, Diekamp et al. 2007).  While a linear regression did not show any 

correlations between TH-ZENK-ir expression and recorded behaviors, previous work has shown 

that dopaminergic cells in the VTA are involved in the motivational aspect of zebra finch song 

(Yanagihara and Hessler, 2006).  It is possible that this may be the mechanism contributing to 

increased TH-ZENK-ir expression in Area X, even though no significant increases were found in 

the VTA of these birds.  Because Area X was the only one of the song areas to show any 

significant difference in expression, it is likely that the TH-ZENK-ir expression in this area is 

due to dopaminergic input as opposed to noradrenergic input. 

TH-ir, ZENK-ir, and co-expression in the female zebra finch  

 We hypothesized that female song perception and mate choice would be mediated by 

catecholamines.  In paired females, there was increased expression of ZENK-ir in NCM and 
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VMH, but a decrease in VTAr, and VTAc.  TH-ir alone was not significantly different between 

groups, but TH+ZENK-ir was lower in VMH and higher in the VTAc of paired than unpaired 

females.   

The NCM is an auditory area important for female song perception (MacDougall-

Shackleton, Hulse et al. 1998) and has been found to contain high density of TH-ir fibers 

(Appeltants, Ball, & Balthazart, 2001). ZENK-ir is a measure of activity and is rapidly induced 

in the NCM of female zebra finches specifically in response to male zebra finch song, as 

opposed to other auditory stimuli (Mello, Vicario, et al., 1992).  The linear regression revealed 

that both clumping and nesting behaviors were positively related to increased ZENK-ir in paired 

females, but not directed singing.  This indicates that the NCM may be responsive to female 

choice, of which clumping is a clear sign (Zann, 1996), which is a direct result of song 

assessment. 

Our findings in the VMH are contradictory, as pairing was associated with increased 

ZENK-ir, but decreased TH+ZENK-ir expression.  In female zebra finches, previous research 

has found that greater TH-ir densities in VMH were positively related to clumping behavior and 

partner’s overall courtship behavior (Alger, Juang, & Riters, 2011).  We found that increased 

ZENK-ir in the VMH was also positively related to clumping behavior in paired females, which 

is consistent with previous work.  No behaviors were related to the decrease in TH-ZENK-ir in 

the VMH, so it is possible that this finding may be an anomaly due to small sample size.  The 

VMH is a part of the social behavior network and deserves further study, particularly in female 

mate choice. 
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Furthermore, in paired females, decreased levels of ZENK-ir were found in the VTAr and 

VTAc, but increased levels of TH-ZENK-ir was found in the VTAc.  Previous work has shown 

that the caudal and rostral regions of the VTA have different relationships to behavior, with the 

VTAc being positively related to directed signing behavior (Goodson, Kabelik, et al., 2009; 

Alger, Juang, & Riters, 2011) as well as sociality and monogamy in finch species (Goodson, 

Kabelik, et al., 2009).  In paired males, TH-ir density in the VTAr has been related positively to 

receiving courtship behavior from a partner, but negatively to clumping behavior while the 

VTAc was positively related to both receiving courtship behavior from a partner and directed 

singing (Alger, Juang, & Riters, 2011).  Our study found a positive relationship between ZENK-

ir expression and clumping behavior in the VTAr and a positive relationship between nesting 

behavior and TH-ZENK-ir in the VTAc.  Alger, Juang, & Riters (2011) suggest that DA in 

VTAc is related to the production of courtship behavior, whereas DA in VTAr may be more 

closely related to receiving social behavior from a partner.  In our study, only VTAc was found 

to have significant measures of DA expression, which was positively associated with nesting 

behavior.  Nesting behavior involves both partners and is shared activity between bonded 

partners (Zann, 1996), which would be considered a production of pairing behavior.  It may be 

that female brain areas react differently throughout the formation of the relationship — such that 

activity in areas associated with social behavior, such as the VMH, may peak during courtship 

and areas involved in sexual reward, such as the VTA, may peak during the preparation for 

parenthood (for the purpose of procreation).  This could account for the decrease in TH+ZENK-

ir in the VMH, while TH+zenk-ir was increased in the VTAc of paired females in our study.  
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Further study of DA activity in the regions of the VTA is needed to determine if this hypothesis 

is true in zebra finches.   

Conclusion: The role of TH-ir in Zebra Finch Pair bonding 

 Here we demonstrated that catecholamine expression may mediate courtship and pairing 

behaviors in the motivational areas of the zebra finch.  This intriguing finding has been 

suggested in studies of other animal models, but has not been validated in a socially gregarious 

species, such as the zebra finch.  For the first time we studied semi-naturalistic pairing and tested 

sexually dimorphic behaviors and related neuroanatomy, which is rather novel.  Based upon 

natural pairing, increased TH-ZENK-ir co-expression was found in Area X of male finches and 

the VTAc, while a decrease was found in the VMH of paired females.  Increased ZENK-ir levels 

were found in the VMH and NCM of paired females, which is a proxy measure of activation in 

these areas.   However, decreased levels of ZENK-ir were found in both regions of the VTA, 

which was not expected.  This study did not directly measure activation, however, it is plausible 

that the pairing process is related to activation in perception and social behavior areas, such as 

the NCM and VMH, more selectively than general reward areas, such as the VTA.  

 Future studies should use larger sample sizes and earlier sampling to capture the effect of 

perception.  It is also possible that the ZENK-ir measures may not be an accurate measure of 

activity in this experimental paradigm.  ZENK-ir is a rapid measure of brain activity and peaks at 

90 mins for protein expression after exposure to novel stimuli (Cecchi, Riberio, et al., 1999).  In 

our naturalistic paradigm, it is possible that the zebra finches had acclimated to the environment, 

or the converse, that after 48 hours together as a bonded pair, the couple was preparing for 

parenthood, which was novel.    Little research has been done on the effect these relationship 
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transitions may have on neurobiology in the zebra finch.  This line of research deserves further 

study, as determining the molecular substrates of social behavior will improve our understanding 

of the etiology of psychoaffective disorders and possible pharmaceutical intervention. 
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Table 3.1. Results from MANOVAs tested in a 3 (immunoreactivity: TH-ir, ZENK-ir, TH+ZENK-ir) x 

3 (experimental group: Paired, Unpaired, Control) design by region in male zebra finches. 

 
Expression df F ᶯ P 

Area X 

TH-ir 2 2.648 0.289 0.108 
ZENK-ir 2 3.204 0.33 0.074 
TH+ZENK-ir 2 4.865 0.428 0.026* 

LMAN 

TH-ir 2 2.024 0.224 0.169 

ZENK-ir 2 2.021 0.224 0.169 
TH+ZENK-ir 2 1.83 0.207 0.197 

HVC 

TH-ir 2 0.43 0.062 0.66 
ZENK-ir 2 0.929 0.125 0.419 
TH+ZENK-ir 2 1.076 0.142 0.369 

VMH 

TH-ir 2 1.599 0.21 0.242 
ZENK-ir 2 1.092 0.154 0.367 
TH+ZENK-ir 2 1.599 0.21 0.242 

VTAr 

TH-ir 2 0.7 0.104 0.516 
ZENK-ir 2 2.514 0.295 0.122 
TH+ZENK-ir 2 0.7 0.104 0.516 

VTAc 

TH-ir 2 1.858 0.236 0.198 
ZENK-ir 2 1.72 0.223 0.22 
TH+ZENK-ir 2 1.858 0.236 0.198 

SNc 

TH-ir 2 1.117 0.147 0.357 
ZENK-ir 2 0.231 0.034 0.797 
TH+ZENK-ir 2 0.751 0.104 0.491 

Note: Significant findings are indicated by an * at (p < 0.05). 
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Table 3.2. Results from MANOVAs tested in a 3 (immunoreactivity: TH-ir, ZENK-ir, 

TH+ZENK-ir) x 2 (experimental group: Paired, Unpaired) design by region in female zebra 

finches. 

 
Expression df F ᶯ P 

NCM 

TH-ir 1 0.951 0.08 0.35 
ZENK-ir 1 15.86 0.59 0.002* 
TH+ZENK-ir 1 0.792 0.067 0.393 

CMM 

TH-ir 1 0.019 0.002 0.893 
ZENK-ir 1 0.021 0.002 0.887 
TH+ZENK-ir 1 0 0 0.991 

VMH 

TH-ir 1 0.569 0.049 0.466 
ZENK-ir 1 13.05 0.543 0.004* 
TH+ZENK-ir 1 11.768 0.517 0.006* 

VTAr 

TH-ir 1 0.846 0.071 0.377 
ZENK-ir 1 5.538 0.335 0.038* 
TH+ZENK-ir 1 3.823 0.258 0.076 

VTAc 

TH-ir 1 0.846 0.071 0.377 
ZENK-ir 1 8.331 0.431 0.015* 
TH+ZENK-ir 1 13.017 0.542 0.004* 

SNc 

TH-ir 1 1.776 0.139 0.21 
ZENK-ir 1 2.32 0.174 0.156 
TH+ZENK-ir 1 0.06 0.005 0.81 

Note: Significant findings are indicated by an * at (p ˂  0.05).  
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Table 3.3. Regression models of courtship and pairing behaviors that explained variations in 

TH-ir, ZENK-ir, and TH+ZENK-ir co-expression in the brain areas of male and female zebra 

finches. 
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Figure 3.1. Examples of TH-ir, ZENK-ir, and TH+ZENK-ir in Area X, LMAN, and HVC of 

adult male zebra finches paired for 48hr, unpaired, or control.  400X magnification. 

 

 

 

 

 

  

 

 

 

 

 

Key 

          = TH-ir (color: blue, location: cytoplasm) 

          = ZENK-ir (color: brown, location: nucleus) 

          = TH+ZENK-ir (combination of the two above) 
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Figure 3.2.  Bar graphs represent the mean number of TH-ir, ZENK-ir, and TH+ZENK-ir 

expressing fibers for Area X, LMAN, and HVC in male zebra finches.  Statistical significance is 

indicated by the * and error bars represent the standard error. 
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Figure 3.2. Examples of TH-ir, ZENK-ir, and TH+ZENK-ir in VMH, VTAr, VTAc, and SN of 

adult male zebra finches paired for 48hr, unpaired, or control.  400X magnification. 

 

 

 

 

 

 

 

 

 

Key 

          = TH-ir (color: blue, location: cytoplasm) 

          = ZENK-ir (color: brown, location: nucleus) 

          = TH+ZENK-ir (combination of the two above) 
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Figure 3.4. Bar graphs represent the mean number of TH-ir, ZENK-ir, and TH+ZENK-ir 

expressing fibers for VMH, VTAr, VTAc, and SNc in male zebra finches.  Statistical 

significance is indicated by the * and error bars represent the standard error. 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

350

TH-ir ZENK-ir TH+ZENK-ir

M
e

a
n

 n
u

m
b

e
r 

o
f 

c
e
ll

s
 i

n
 V

M
H

Paired

Unpaired

Control

0

50

100

150

200

250

300

350

TH-ir ZENK-ir TH+ZENK-ir

M
e

a
n

 n
u

m
b

e
r 

o
f 

c
e
ll

s
 i

n
 V

T
A

r

Paired

Unpaired

Control

0

50

100

150

200

250

300

350

TH-ir ZENK-ir TH+ZENK-ir

M
e

a
n

 n
u

m
b

e
r 

o
f 

c
e
ll

s
 i

n
 S

N

Paired

Unpaired

Control

0

50

100

150

200

250

300

350

TH-ir ZENK-ir TH+ZENK-ir

M
e

a
n

 n
u

m
b

e
r 

o
f 

c
e
ll

s
 i

n
 V

T
A

c

Paired

Unpaired

Control



www.manaraa.com

69 

 

 

Figure 3.5. Examples of TH-ir, ZENK-ir, and TH+ZENK-ir in NCM, CMM, and VMH of adult 

female zebra finches paired for 48hr, unpaired, or control.  400X magnification. 

 

 

 

 

 

Key 

          = TH-ir (color: blue, location: cytoplasm) 

          = ZENK-ir (color: brown, location: nucleus) 

          = TH+ZENK-ir (combination of the two above) 
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Figure 3.6. Bar graphs represent the mean number of TH-ir, ZENK-ir, and TH+ZENK-ir 

expressing fibers for NCM, CMM, and VMH in female zebra finches.  Statistical significance is 

indicated by the * and error bars represent the standard error. 
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Figure 3.7. Examples of TH-ir, ZENK-ir, and TH+ZENK-ir in VTAr, VTAc, and SNc of adult 

female zebra finches paired for 48hr, unpaired, or control.  400X magnification. 

 

 

 

 

 

SNc 

Key 

          = TH-ir (color: blue, location: cytoplasm) 

          = ZENK-ir (color: brown, location: nucleus) 

          = TH+ZENK-ir (combination of the two above) 
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Figure 3.8. Bar graphs represent the mean number of TH-ir, ZENK-ir, and TH+ZENK-ir 

expressing fibers for VTAr, VTAc, and SNc in female zebra finches.  Statistical significance is 

indicated by the * and error bars represent the standard error. 
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CHAPTER 4 – THE RELATIONSHIP BETWEEN ACTIVATION OF 

NORADRENERGIC RECEPTORS AND COURTSHIP AND PAIRING BEHAVIORS IN 

MALE AND FEMALE ZEBRA FINCHES   

Despite the fact that DA seems a likely mediator in the courtship and pairing behaviors of 

male and female zebra finches, our results were conflicting.  TH+ZENK-ir co-expression was 

only found in Area X of males and the VMH and VTAc of females, and the relationship to 

pairing was inconsistent.  It is possible that catecholamines mediate courtship and pairing 

behaviors in the zebra finch via the noradrenergic system.   

In songbirds, such as the zebra finch, norepinephrine (NE) plays a critical role in the song 

learning and production in males (Barclay, Harding et al. 1996; Castelino and Ball 2005; Cornil, 

Castelino, & Ball, 2008; Heimovics et al., 2011; Riters & Ball, 2002) and song perception in 

females (Appeltants, Del Negro et al. 2002; Sockman & Salvante, 2008; Vyas, Harding et al. 

2008; Lynch, Diekamp et al. 2012).  Furthermore, the brain areas underlying the song system 

have been implicated in learning and memory (Bolhuis, Zijlstra et al. 2000; Bolhuis, Hetebrij et 

al. 2001; Terpstra, Bolhuis et al. 2004; Bolhuis and Gahr 2006).  Therefore, studying NE in the 

zebra finch is a useful mechanism for understanding the cognition underlying learning and 

memory. 

  NE has been implicated in social recognition (Dluzen, Muraoka, & Landgraf, 1998) and 

social memory (Griffin & Taylor, 1995) in the rat, an important part of social relationships. 

Social recognition in the zebra finch is accomplished through individual song and NE is thought 

to play a role in the production and learning of song in males (Castelino & Ball 2005; Cornil, 

Castelino et al., 2008; Riters & Ball, 2002) and in the perception and memory of song in females 
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(Appeltants, Ball, & Balthazart, 2001; Lynch, Diekamp et al., 2012; Velho, Lu, et al., 2012).  

Whereas the role of NE in the avian song system has been established, less is understood of how 

NE is involved in the formation of social relationships. Thus, studying the neural substrates of 

song production and perception in zebra finches can provide insights into human social behavior, 

as few animal taxa display vocal learning.  The similarities between the imitation process 

between humans and songbirds (i.e. learning from a parent or “tutor”) make the zebra finch a 

unique animal model for studying vocal communication.  The zebra finch (Taeniopygia guttata) 

is a highly gregarious avian species that lives in large social groups, forms lifelong monogamous 

pair bonds, and uses visual and vocal cues for social recognition (Zann, 1996), much like 

humans.  Given these similarities, the zebra finch is an excellent model for studying the role of 

NE in the formation of social relationships at a molecular level. 

NE has been well studied in the zebra finch song and auditory systems (Barclay, Harding 

et al. 1996; Mello, Pinaud et al. 1998; Newman 1999; Riters and Ball 2002; Cornil, Castelino et 

al. 2008; Velho, Lu et al. 2012).  NE is an exciting candidate mechanism for studying the 

formation of social relationships in zebra finches given the prevalence of NE in the brain - which 

contains 10 times the amount of NE compared to mammals (Barclay and Harding 1988; 

Waterman and Harding 2008). Furthermore, our understanding of the neurobiology of the song 

system and genome are well established (Nottebohm, Alvarez-Buylla et al. 1990; Nottebohm 

1991; Nottebohm 2002; Reiner, Perkel et al. 2004) thus, NE deserves further study in the 

formation of social relationships in the zebra finch. 

High densities of catecholaminergic innervations have been documented within the song 

system through immunocytochemical studies using dopamine-beta-hydroxylase (DBH; Bottjer, 
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1993; Soha, Shimizu, & Doupe, 1995; Appletants, Ball, & Balthazart, 2001; Mello, Pinaud, & 

Ribeiro, 1998; Castelino, Diekamp, & Ball, 2007; Lynch, Diekamp, Ball 2008).  The alpha 2c 

adrenergic receptor (ADRA2c) has been found predominantly in song and motivation brain areas 

in male zebra finches (Riters & Ball 2002; Cornil, Castelino et al. 2008; Heimovics et al 2011).  

Particularly high levels of ADRA2c have been found in the song regions HVC, RA and Area X 

of males (Ball & Balthazart, 2007; Cornil, Castelino et al. 2008; Riters and Ball 2002).   

Further evidence of noradrenergic action in the song system comes from research in 

which noradrenergic fibers are destroyed using a specific noradrenergic neurotoxin, DSP-4.  

Following injection of DSP-4, ZENK-ir increases in Area X as a result of directed singing 

(Castelino and Ball 2005).  ZENK is low when males are engaged in directed, or courtship 

singing, but high during undirected, or non-courtship, song (Jarvis et al., 1998, Kimpo & Doupe, 

1997).  Therefore, DSP-4 administration modifies the motivational aspects of directed song in 

Area X (Castelino and Ball 2005), although the mechanism by which this occurs is unclear.     

NE is implicated in male song production and it may also be critical to song perception in 

females, both of which affect pairing behavior.  Increases in the co-localization of TH and ZENK 

cells in the locus coeruleus (LoC) occur in song-exposed female zebra finches (Lynch, Diekamp 

et al. 2012), indicating activation of NE in response to hearing courtship song from a male. 

Depletion of NE decreases female mate choice in songbirds (Vyas, Harding et al. 2008).  

Females treated with a NE neurotoxin (DSP-4) do not discriminate between control males and 

DSP-4 males, whereas control females show a significant preference for control males over DSP-

4 males (Vahaba, Lacey, & Tomaszycki, 2013).  DSP-4 treatments (Lynch and Ball 2008) and 

treatments of alpha-adrenergic antagonists both decrease ZENK expression in NCM of females 
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(Velho, Lu et al. 2012).   Also, ZENK-ir is significantly reduced in female canaries treated with 

DSP-4 in the NCM and CMM (Lynch and Ball 2008). Induction of ZENK is a proposed 

mechanism of synaptic plasticity and memory consolidation (Jarvis & Nottebohm, 1997; Mello, 

2002; Knapska & Kaczmarek, 2004), making it useful in the study of avian song and a mediator 

of pairing behavior. Discerning high quality male song is critical to mate choice in the female 

zebra finch (Riebel 2000, 2003; Tomaszycki & Adkins-Regan, 2005) and evidence indicates that 

NE action in the female auditory system is critical to this process. ADRA1d is the most prevalent 

alpha adrenergic sub-type in the caudomedial nidopallium  (NCM - Velho, Lu et al. 2012), and is 

therefore a promising avenue for study in females.   

The goal of the current study is to understand the role of NE in social relationships in 

both male and female zebra finches.  This will be accomplished by analyzing ADRA2c (in 

males), ADRA1d (in females), and ZENK in the song system (HVC, RA, LMAN, Area X) and 

auditory system (NCM and CMM) of paired, unpaired, and control zebra finches. 

Method 
 
Subjects 

 Subjects are the same as those used in Ch.3. 

Brain Collection 

Brains were collected as in Ch.3. 

Probe Preparation  

Probes were derived from published sequences (ADRA2c: Genbank:XM_002195081; 

ADRA1d: Genbank:XM_002187963). We developed primers for both using the NCBI primer 

tool (ADRA2c: Forward = ACGTGCTGTTCTGTACCTCG; reverse = 
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GCTACTGGAGTGCTTGGAGG and ADRA1d: Forward = CTGGCCGTCTTCATCCTCTC; 

reverse = CTGGCCACCACGTAAATCCT, beginning at 345bp) and conducted reverse-

transcribed PCR (#12574-035, Invitrogen, Carlsbad, CA) per manufacturer’s instructions on 

isolated RNA to obtain the DNA. The resulting products from both ADRA2c and ADRA1d were 

sequenced using central facilities (Wayne State University) and sequence identity for zebra finch 

ADRA2c and ADRA1d was confirmed using the BLASTn tool on the NCBI website. Product 

size for ADRA2c (611bp) and ADRA1d (539bp) was also confirmed.  Both probes were 

prepared using Roche Applied Science DIG RNA Labeling kits according to manufacturer’s 

instructions (catalog # 11175025910, Indianapolis, IN).  Probe concentrations were determined 

using a dot blot assay (Lowrey & Tomaszycki, 2014). 

In Situ Hybridization and Immunocytochemistry (ICC) 

Fluorescence in situ hybridization and ICC was conducted using a protocol derived from 

Wu et al. (2010). Slides were fixed with 3% paraformaldehyde, acetylated, dehydrated, and air 

dried. Hybridization occurred at 55°C overnight with 1:1000 concentration of ADRA2c (for 

males only) or ADRA1d (for females only) probe in hybridization buffer. After a series of 

washes, slides were incubated in 0.3% hydrogen peroxide in TNT buffer for 10 minutes, and 

blocked in TNB Buffer for a half hour.  Slides were then incubated in the secondary antibody 

(1:200, Anti-DIG-POD, #11207733910, Roche Applied Science, Indianapolis, IN) for 2hr, 

followed by 30 minutes in a tyramide-conjugated fluorophore (1:100, TSA kit#22, Alexa 488, 

Invitrogen, Carlsbad, CA). Slides were then rinsed twice in TNT buffer and blocked for 30 

minutes in 2% normal goat serum and 0.3% Triton X in PBS at room temperature.  Slides were 

incubated for 48 hours in primary ZENK antibody (anti-rabbit IgG 1:1000, Santa Cruz 
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Biotechnology, Dallas, TX, #SC189) at 4°C.  Slides were rinsed three times in PBS and 

incubated in biotinylated goat anti-rabbit serum (1:250; Vector Laboratories, Burlingame, CA) in 

2% NGS, 0.3% Triton X, and tyramide-conjugated fluorophore (1:100, TSA kit#15, Alexa 594, 

Invitrogen, Carlsbad, CA) in TBS for 2 hours.  Slides were then rinsed 3 times in PBS and rinsed 

once with distilled water.  Finally, slides were cover-slipped with Slow Fade (#S36937, 

Invitrogen, Carlsbad, CA), cured overnight, and sealed with nail polish. 

Quantification 

Regions were quantified using a Nikon Eclipse 80i microscope and Nikon Elements 

Software (AR 3.0). The observers (KM, PK, and ELO), who were blind to treatment groups, 

quantified the number of cells in each brain area. For cells containing ADRA1d (females), 

ADRA2c (males), ZENK (both sexes) or ADRA/ZENK co-expression (both sexes), 6 brain 

regions were investigated.  These include the song areas Area X, LMAN, HVC, and RA in males 

and the auditory areas CMM and NCM in females.  These regions were located using adjacent 

slides stained with thionin. On average, 3 sections (representing both left and right hemispheres) 

were quantified per animal.  

Statistical Analysis 

All data were analyzed in SPSS v.22 (SPSS Inc. 2013, Chicago, IL). Prior to analysis, the 

mean number of cells expressing ADRA (2c for males and 1d for females), immunopositive for 

ZENK, and co-localization of ADRA and ZENK across regions, and measured behaviors were 

log-transformed to achieve normality.  Two control treatment groups were created: birds that 

remained unpaired despite the opportunity to pair, and those who were housed in same sex 

aviaries and not allowed to pair.  Differences in behavior by treatment and regional expression 
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were tested in a 3 (cell expression: ADRA, ZENK, co-localization)  3 (treatment group: Paired, 

Unpaired, Control) multivariate analysis of variance (MANOVA).  Due to the limitations of 

sample size and multicollinearity of cell expression across regions (all r = 0.49-0.81), separate 

MANOVAs were run by region depending on sex (Males: Area X, LMAN, HVC and Females: 

CMM and NCM) Bonferroni corrections where appropriate. Effect sizes (η2) are also reported. 

Due to an inability to adequately sample tissue, 3 unpaired and 3 control female cases were lost, 

resulting in an inadequate sample size. To allow for multivariate analyses, the control group in 

the female birds was defined as both unpaired and same-sex controls (n = 6).  Measures of cell 

expression in RA were insufficient for statistical analyses and therefore the region was omitted 

from hypothesis testing.  

 The relationship between pairing and courtship behaviors and ADRA+ZENK expression 

was analyzed using multiple linear regressions.  ADRA, ZENK, and co-expression cell numbers 

were averaged across each hemisphere in each section and log-transformed. To test the ability of 

behaviors to predict expression, ADRA, ZENK, and co-expression in brain areas that were 

statistically significant were entered as dependent variables, and behaviors (directed singing, 

clumping, nesting, and allopreening) were entered as independent variables in the multiple linear 

regression.  Copulations and tail quivers occurred too infrequently to permit inclusion in the 

analyses. The multiple linear regressions were run for each sex separately.  Stepwise multiple 

linear regressions were run; only models with the highest adjusted R
2
 values are presented, as in 

earlier work (Alger et al., 2011). All models and associated p-values are reported in Table 1. 

Results 

Association between Regional Expression and Pairing in Males 
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ADRA2c , ZENK, and co-expression in male zebra finches. The effect of Pairing was 

statistically significant for co-expression in Area X, but not for ADRA2c or ZENK-ir expression 

alone (ADRA2c: F2,15 = 3.02, p = 0.09, η
2
 = 0.34; ZENK: F2,15 =3.28, p = 0.08, η

2
 = 0.35; co-

expression: F2,15 = 5.41, p = 0.02, η
2
 = 0.47; see Figure 1).  Bonferroni post hoc tests revealed 

that the paired group (M = 58.0, SE = 11.0) had a higher number of cells co-expressing ADRA2c 

mRNA + ZENK-ir than the unpaired group (M = 12.4, SE = 9.0; p = 0.02).  There was no 

significant difference between the paired group and the control group (M = 22.0, SE = 9.8; p = 

0.09, see Figure 1). There was also no significant difference between the unpaired and control 

group (p = 1.00, see Figure 1) 

The effect of Pairing was statistically significant for co-expression in LMAN, but not for 

ADRA2c or ZENK-ir expression alone (ADRA2c: F2,15 = 2.34, p = 0.14, η
2
 = 0.28; ZENK: F2,15 

= 1.95, p = 0.19, η
2
 = 0.25; co-expression: F2,15 = 3.83, p = 0.05, η

2
 = 0.39; see Figure2).  

Bonferroni post hoc tests revealed that the paired group (M = 71.8, SE = 13.8) had a higher 

number of cells co-expressing ADRA2c mRNA + ZENK-ir than the unpaired group (M = 23.8, 

SE = 11.3), however, this difference was not statistically significant (p = 0.06).  There was no 

significant difference between the paired group and the control group (M = 32.6, SE = 12.4; p = 

0.17) or between the unpaired group and the control group (p = 1.00). 

The effect of Pairing was not statistically significant for ADRA2c, ZENK-ir, or co-

expression in HVC (ADRA2c: F2,15 = 0.86, p = 0.45, η
2
 = 0.13; ZENK: F2,15 = 0.37, p = 0.70, η

2
 

= 0.06; co-expression: F2,15 = 1.31, p = 0.31, η
2
 = 0.18; see Figure 3).   

Association between Regional Expression and Pairing in Females 
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ADRA1d , ZENK, and co-expression in female zebra finches.  In the NCM, the effect of 

Pairing was not statistically significant for ADRA1d mRNA, ZENK-ir, or co-expression 

(ADRA1d: F1,13 = 1.29, p = 0.28, η
2
 = 0.11; ZENK: F1,13 = 2.81, p = 0.12, η

2
 = 0.20; co-

expression: F1,13 = 0.09, p = 0.77, η
2
 = 0.01; see Figure 4).   

The effect of Pairing was not statistically significant for ADRA1d mRNA, ZENK-ir, or 

co-expression in CMM (ADRA1d: F2,10 = 1.13, p = 0.36, η
2
 = 0.18; ZENK: F2,10 = 0.84, p = 

0.46, η
2
 = 0.14; co-expression: F2,15 = 0.25, p = 0.78, η

2
 = 0.05; see Figure5).   

Contributions of Behavior to Variations in ADRA2c+ZENK-ir Co-expression 

In Area X of males, directed singing, clumping, nesting, and allopreening behavior 

predicted variations in the number of cells expressing ADRA2c+ZENK-ir co-expression (see 

Table 1).  However, only nesting and allopreening were statistically significant (see Table 1).  

Only allopreening significantly predicted the number of cells expressing ADRA2c+ZENK-ir co-

expression in LMAN of male zebra finches.   

There were no significant effects of pairing on molecular expression in females, so no 

linear regressions were run for the NCM or CMM. 

Discussion 

This was the first study to investigate the effects of forming a social relationship on 

expression of ADRA mRNA in zebra finches.  Both ADRA and ZENK have been implicated in 

brain areas important for learning and memory — functions that are relevant to pairing.  ZENK-

ir is a protein marker for activation in brain areas important for learning and memory (Mello & 

Clayton, 1994; Mello, 2002; Knapska & Kaczmarek, 2004) and has been studied in relation to 

social cues (Goodson, 2005; Heimovics & Riters, 2007; Maney et al., 2003; Robinson, Fernald, 
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& Clayton, 2008).  ADRAs have been implicated in memory processing (Scheinin et al., 1994; 

Gibbs, Hutchinson, & Hertz, 2008; Hutchinson, Gibbs, & Summers, 2008; Gibbs, Hutchinson, & 

Summers, 2010) and in the song system (Riters & Ball, 2002; Cornil, Castelino, & Ball, 2008).  

Here, I demonstrate that an increase in ZENK + ADRA2c in song areas is associated with 

increases in courtship behaviors by males, and the relationship is stronger in paired birds than in 

unpaired birds.   

ADRA2c + ZENK-ir co-expression increased in song areas of paired male zebra finches.    

 ADRA2c is proposed to be a neural substrate of singing in male zebra finches.  Here, 

male zebra finches that were in a pair bonded relationship for 48 hours showed higher 

ADRA2c+ZENK-ir co-expression in song areas Area X and LMAN.  Receptor autoradiography 

studies in the zebra finch have shown high densities of ADRA2 in these same regions (Riters & 

Ball, 2002; Cornil, Castelino, & Ball, 2008).  Evidence for specific action in these areas comes 

from co-localization of ADRA2c + ZENK.  

ZENK-ir is low in Area X when males are engaged in directed singing toward another 

female or male, but high when singing alone (Jarvis et al., 1998, Kimpo & Doupe, 1997).  Male 

canaries that produce song show ZENK-ir in HVC, RA, Area X, and LMAN and the number of 

cells immunopositive for ZENK is linearly proportional to the amount of song produced (Jarvis 

& Nottebohm, 1997).  Increased singing in paired male zebra finches resulted in increased levels 

of ADRA2c + ZENK co-expression in Area X and HVC.  This is the first study, to our 

knowledge, to investigate the effects of courtship on ADRA2c + ZENK co-expression in the 

male zebra finch.  Based on these findings, ADRA2c receptors in Area X and LMAN are active 

during the pairing process in male zebra finches. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2329819/#R82
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2329819/#R82
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A linear regression showed that nesting and allopreening behavior significantly predicts 

variations in ADRA2c+ZENK-ir co-expression in Area X of male zebra finches.  Given that 

these are behaviors that are only expressed after the pairbond has been formed; it is possible that 

ADRA2c plays a role in forming the pairbond.  Allopreening also significantly predicts 

ADRA2c+ZENK-ir co-expression in LMAN.  Although singing was more prevalent in paired 

males and plays a major role in the courtship process, it did not significantly predict variation in 

ADRA2c+ZENK-ir.   

 The ADRA2c receptor sub-type has been linked to memory, and this may be the role that 

it plays in the formation of social relationships.  ADRA2c mRNA is localized to the basal 

ganglia, cerebral cortex and hippocampus in mammals (Scheinin et al., 1994), brain areas 

involved in memory processing.  Activation of ADRA2c increases the synthesis of glycogen in 

the forebrain and inhibiting glycogen breakdown impairs memory formation (Gibbs, Hutchinson, 

& Hertz, 2008; Hutchinson, Gibbs, & Summers, 2008).  Glycogen that is present in astrocytes 

plays an important role in memory processing, but it is not known whether or not ADRA2cs are 

performing this function in the LoC or other brain areas (Gibbs, Hutchinson, & Summers, 2010).  

ZENK also demonstrates specificity for patterns of cell activity that lead to neuronal change and 

ultimately to long-term potentiation and plasticity underlying learning and memory (Mello & 

Clayton, 1994; Mello, 2002; Knapska & Kaczmarek, 2004).  Therefore the role of ADRA2c and 

ZENK may act through memory functions that are necessary for pair bond formation.   

Pairing did not significantly alter ADRA1d + ZENK in female zebra finches.  

The present study found that levels of ADRA1d mRNA, ZENK-ir, and co-expression in 

the NCM and CMM were higher in paired females than in the control group, however, these 
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differences were not significant.  However, these tests were likely underpowered, and therefore 

did not achieve statistical significance.  Females have been largely understudied in animal 

research (McCarthy et al. 2012; Arnold & Lusis 2012), and this is also true of the zebra finch.  

ADRA1d is the most prevalent alpha adrenergic sub-type in the NCM (Velho, Lu et al. 2012), 

but little is known about its function.  Further study of the function of ADRA1d in the female 

zebra finch brain is therefore needed. 

Conclusions and Future Directions 

The present study found that paired male zebra finches had higher levels of 

ADRA2c+ZENK-ir co-expression in song areas Area X and LMAN than unpaired males.  These 

results extend previous findings that directed singing activates noradrenergic receptors (Riters & 

Ball, 2002; Cornil, Castelino, & Ball, 2008; Mello et al., 1998; Barclay & Harding, 1990; 

Barclay et al., 1991).  These results suggest that noradrenergic receptors are active during the 

pairing process in song and motivation areas in the male zebra finch. 

There were more cells exhibiting co-expression of ADRA1d+ZENK in the NCM and 

CMM of paired females, but this group difference was not statistically significant.  These 

findings indicate that forming a social relationship, such as a pair bond, has a significant effect 

on the noradrenergic system in the male zebra finch brain. Social relationships rely heavily on 

social recognition, learning, and memory and NE and ZENK are both important mechanisms for 

these behaviors.  Future studies should seek to understand the specific actions of post-synaptic 

ADRA2c receptors in the avian brain and their role in learning and memory in the male zebra 

finch.  The exact location and function of the ADRA1d receptor also deserves further study.  
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Table 4.1. Regression models of courtship and pairing behaviors that explained variations in 

ADRA2c+ZENK-ir co-expression in the brain areas of male zebra finches. 

 
Model Statistics Variables in model Beta p-Values 

Area X       

Adjusted R²=0.60, F4, 14 = 3.72, p = 

0.042 
Directed Singing -0.37 0.146 

 Clumping -0.39 0.183 

 Nesting 0.56 0.037 

 Allopreening 0.72 0.024 

LMAN       

Adjusted R²=0.53, F3, 13 = 5.04, p = 

0.043 
Allopreening 0.53 0.043 
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Figure 4.1. Examples of ADRA2c mRNA in Area X of adult male zebra finches paired for 48hr, 

unpaired, or control. 400X magnification. Bar graphs represent the mean number of ADRA2c 

mRNA, ZENK-ir, and ADRA2c+ZENK cells for Area X of adult female zebra finches.  

Statistical significance is indicated by the * and error bars represent the standard error. 
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Figure 4.2. Examples of ADRA2c mRNA in LMAN of adult male zebra finches paired for 48hr, 

unpaired, or control. 400X magnification. Bar graphs represent the mean number of ADRA2c 

mRNA, ZENK-ir, and ADRA2c+ZENK cells for LMAN of adult female zebra finches.  

Statistical significance is indicated by the * and error bars represent the standard error. 
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Figure 4.3. Examples of ADRA2c mRNA in HVC of adult male zebra finches paired for 48hr, 

unpaired, or control. 400X magnification. Bar graphs represent the mean number of ADRA2c 

mRNA, ZENK-ir, and ADRA2c+ZENK cells for HVC of adult female zebra finches.  Statistical 

significance is indicated by the * and error bars represent the standard error. 
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Figure 4.4. Examples of ADRA1d mRNA in NCM and CMM of adult female zebra finches 

paired for 48hr andcontrol. 400X magnification. Bar graphs represent the mean number of 

ADRA1d mRNA, ZENK-ir, and ADRA1d+ZENK cells for NCM and CMM of adult female 

zebra finches.  Statistical significance is indicated by the * and error bars represent the standard 

error. 

 

 

48hr Pair Control

CMMNCM

ADRA1d 

mRNA

ZENK-ir

ADRA1d 

+ ZENK

Control48hr Pair

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

ADRA2c ZENK-ir ADRA2c+ZENK-ir

M
e
a
n

 n
u

m
b

e
r 

o
f 

c
e
ll
s
 i

n
 N

C
M

Paired

Control

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

ADRA2c ZENK-ir ADRA2c+ZENK-ir

M
e
a
n

 n
u

m
b

e
r 

o
f 

c
e
ll
s
 i

n
 C

M
M

Paired

Control



www.manaraa.com

90 

 

 

CHAPTER 5 – THE EFFECT OF AN OXYTOCIN ANTAGONIST ON 

NORADRENERGIC RECEPTOR MRNA EXPRESSION AND SOCIAL CHOICE IN 

MALE AND FEMALE ZEBRA FINCHES  

The purpose of this collection of studies is to determine if OT modulates the 

noradrenergic system by increasing the level of ADRA mRNA in the zebra finch. A similar 

effect has been reported in rodents in which subchronic treatment with OT increased the 

responsiveness of ADRA2 to an alpha2 agonist in the hypothalamus, amygdala, paraventricular 

thalamic nucleus (Diaz-Cabiale et al. 2000), and the locus coeruleus (LoC; Petersson et al., 

1998).  The purpose of the current study is to test the behavioral and molecular effects of 

blocking OT on ZENK, ADRA2c in male and ADRA1d in female zebra finches.  In our first 

study, we found that both MT and VT mRNA were increased in paired birds as compared to 

unpaired birds of both sexes.  Our results from TH-ZENK-ir studies were inconsistent, but we 

did find evidence that ADRA2c +ZENK is more prevalent in paired males.  Based on previous 

research and our present findings, we predict that blocking OT will result in increased ADRA2c 

in song areas of males and will increase ADRA1d in the auditory areas of females.  

Social relationships are complex and likely involve multiple neural circuits, including 

those involved in other cognitive activities, such as learning, memory, motivation, and attention 

(Bolhuis, Zijlstra et al. 2000; Bolhuis, Hetebrij et al. 2001; Terpstra, Bolhuis et al. 2004; Bolhuis 

and Gahr 2006).  Two neurotransmitters prevalent in these neural circuits are norepinephrine 

(NE) and oxytocin (OT).  NE is associated with learning (Hu, Real et al. 2007), memory (Davis 

and Squire 1984; Sarter and Markowitsch 1985), motivation (Berridge and Waterhouse 2003), 

and attention (Aston-Jones and Bloom 1981; Coull, Büchel et al. 1999; Aston-Jones and Cohen 
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2005). These behaviors are likely important for the formation and maintenance of social 

relationships.  OT regulates affiliative behaviors in animals (Young and Wang 2004; Donaldson 

and Young 2008; Goodson and Thompson 2010), and is involved in prosocial behaviors such as 

trust and thinking about a romantic partner in humans (Meyer-Lindenberg, Domes et al. 2011; 

Churchland and Winkielman 2012). Because these neural substrates overlap with the avian song 

system (Bolhuis, Zijlstra et al. 2000; Bolhuis, Hetebrij et al. 2001; Terpstra, Bolhuis et al. 2004; 

Bolhuis and Gahr 2006), it is likely that NE and OT work in concert in the formation and 

maintenance of social relationships.   

NE has been implicated in social recognition (Dluzen, Muraoka, & Landgraf, 1998) and 

social memory (Griffin & Taylor, 1995), both of which are necessary to form social 

relationships. NE also plays a role in the production and learning of song in male zebra finches 

(Castelino & Ball 2005; Cornil, Castelino et al., 2008; Riters & Ball, 2002) and in the perception 

and memory of song in females (Appeltants, Ball, & Balthazart, 2001; Lynch, Diekamp et al., 

2012; Velho, Lu, et al., 2012), which are vital for social recognition and communication.  

Whereas the role of NE in the avian song system has been established, less is understood about 

the role of NE in the formation of social relationships. Thus, studying the neural substrates of 

song production and perception in zebra finches can provide insights into human social behavior, 

as few animal taxa display vocal learning and rely heavily on vocal communication for social 

interactions.   

Indeed, the few studies of male zebra finch courtship implicate NE in the formation of 

social relationships.  High rates of NE turnover have been found in Area X of males after 

exposure to a female (Barclay and Harding 1988), implicating this area in motivated courtship 
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behaviors, such as directed singing. Furthermore, treatment with DSP-4, a noradrenergic 

neurotoxin, in males increases the latency to sing to females, and results in fewer song bouts and 

courtship displays (Barclay, Harding et al. 1996) and less directed singing (Vahaba, Lacey, & 

Tomaszycki, 2013).  Overall, DSP-4 treatment increased the latency of males to form a pair 

relationship, and decreased the likelihood to pair in both sexes (Vahaba, Lacey, & Tomaszycki, 

2013).   

The alpha-adrenergic receptors (ADRAs) are widely expressed in brain areas controlling 

song in the male zebra finch.  The density of ADRA2 receptors in the song system is higher in 

males than in females (Riters & Ball 2002).  ADRA2s have been localized to song regions: Area 

X, lateral magnocellular nucleus of the anterior nidopallium (LMAN), HVC (letter based name), 

and robust nucleus of the arcopallium (RA - Cornil, Castelino, & Ball, 2008; Heimovics et al., 

2011; Riters & Ball, 2002).  The song system contains two major pathways: the sensorimotor 

pathway and the anterior forebrain pathway (AFP; (Solis, Brainard et al. 2000).  The 

sensorimotor pathway is necessary for normal song production throughout life and consists 

mainly of the HVC and RA  (Solis, Brainard et al. 2000).  The AFP is a basal ganglia-forebrain 

circuit important in evaluating song feedback and modifying vocal output (Solis, Brainard et al. 

2000).  The AFP includes mainly Area X and LMAN (Solis, Brainard et al. 2000).  The 

ADRA2c  is the most prevalent in the song system and is activated when males engage in 

directed song (Cornil, Castelino, & Ball, 2008; Heimovics et al., 2011; Riters & Ball, 2002). 

ZENK is modulated by the noradrenergic system in the song system of male zebra finches 

(Castelino & Ball, 2005; Cornil, Castelino, & Ball, 2008).  ZENK (an acronym of zif-268, egr-1, 

ngfi-a and krox-24) is an immediate early gene (IEG) that is expressed in areas of the song 



www.manaraa.com

93 

 

 

system and auditory regions directly in response to singing behavior or song perception 

(Moorman, Mello et al. 2011).  

Female zebra finches do not sing, but choose males on the basis of song (Tomaszycki and 

Adkins-Regan 2005), so the auditory pathway may be more important for adult females than for 

adult males. The auditory pathway consists of the caudal medial mesopallium (CMM), caudal 

medial nidopallium (NCM), and Field L (Jarvis and Nottebohm 1997).  The auditory pathway  

has reciprocal connections to the song system.  Exposing zebra finches to conspecific song leads 

to increased neuronal activation in the NCM and CMM, but not in the song system (Mello, 

Vicario et al. 1992; Mello and Clayton 1994; Bolhuis, Zijlstra et al. 2000), indicating that these 

brain areas have a specialized function for auditory processing.   

NE is implicated in song perception in females, which affects pairing behavior.  

Depletion of NE decreases female mate choice in songbirds (Vyas, Harding et al. 2008).  

Females treated with a NE neurotoxin (DSP-4) do not prefer control males over DSP-4 males, 

whereas control females show a significant preference for control males over DSP-4 males 

(Vahaba, Lacey, & Tomaszycki, 2013).  DSP-4 treatments (Lynch and Ball 2008) and treatments 

of alpha-adrenergic antagonists both decrease ZENK expression in NCM of females (Velho, Lu 

et al. 2012).   ZENK-ir is also significantly reduced in female canaries treated with DSP-4 in the 

NCM and CMM (Lynch and Ball 2008). Induction of ZENK is a proposed mechanism of 

synaptic plasticity and memory consolidation (Jarvis & Nottebohm, 1997; Mello, 2002; Knapska 

& Kaczmarek, 2004), making it useful in the study of avian song and a mediator of pairing 

behavior. Choosing high quality male song is critical for mate choice in the female zebra finch 
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(Riebel 2000, 2003; Tomaszycki & Adkins-Regan, 2005) and evidence indicates that NE action 

in the female auditory system is critical to this process. ADRA1d is the most prevalent receptor 

in the NCM and is more prevalent in song-responsive cells in the NCM than other noradrenergic 

receptor types (Velho et al. 2012), making it a promising avenue for study in females.   

The zebra finch is an excellent model of social relationships.  The brain areas involved in 

song production and audition in birds are analogous to those in the human auditory system 

(Bolhuis, Okanova, & Scharff, 2010; Doupe & Kuhl, 1999; Jarvis, 2007; Moorman et al., 2012), 

making zebra finches an ideal translational model for human language acquisition and 

communication, including learning and memory. The zebra finch is a monogamous species that 

lives in large social groups, much like humans.  In this model, the neurobiology of the song 

system is well understood, and the genome is fully sequenced and well-annotated — making 

zebra finches an excellent model for testing the interaction between neural substrates and social 

relationships.   

There is extensive research implicating a role for OT in trust, sociality, parental care, and 

romantic relationships in mammals (Young and Wang 2004, Donaldson and Young 2008, 

Goodson and Thompson 2010; Feldman, 2012; Bosch and Neumann 2012; Insel, 2010).  In the 

prairie vole, a rodent model of monogamy, exogenous administration of OT at high doses 

facilitates pair bonding in both sexes (Cho, DeVries et al. 1999). OT receptors in the nucleus 

accumbens (NAc) are necessary for pair bonding in female prairie voles (Young, Lim et al. 2001, 

Liu and Wang 2003) and exogenous administration of OT promotes pair bonding in the absence 

of mating (Liu and Wang 2003). Affiliative behaviors between members of a monogamous pair 
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account for natural variations in urinary OT in both sexes of cotton-top tamarins (Snowdon, 

Pieper et al. 2010).  In humans, OT levels positively correlate with more interactions with a 

romantic partner (see Bartz and Hollander 2006; Feldman 2012; Guastella and MacLeod 2012; 

Yamasue, Yee et al. 2012 for reviews).  Furthermore, OT treatment has been shown to restore 

social recognition in OT knockout mice (Ferguson, Aldag, Insel, & Young, 2001).  Thus, OT 

appears to affect social relationships in mammals. 

There is further evidence from avian models for a role of OT in social relationships.  In 

avian species, species-typical group sizes correlate with mesotocin (MT – the avian homologue 

of OT) receptor distributions in the lateral septum (LS) regardless of sex (Goodson, Schrock et 

al. 2009).  OT antagonist (OTA) treated zebra finches of both sexes demonstrate an increased 

latency to pair (Pedersen and Tomaszycki 2012). Paired zebra finches of either sex have higher 

levels of MT mRNA in the paraventricular nucleus (PVN – location of OT synthesis) than 

unpaired birds (Lowrey & Tomaszycki, 2014). Furthermore, OTA treated birds that do pair are 

less likely to remain paired (Klatt and Goodson 2013).  Taken together, these studies support the 

role of OT in social relationships.   

Intriguingly, OT and NE are expressed in many of the same brain regions. These brain 

regions underlie the functions of learning, memory, and motivation functions (Goodson, 2004; 

Korf, 1981; Mello, Pinaud, & Ribero, 1998; Castelino, Diekamp, & Ball, 2007, 2008; Bottjer, 

1993; Soha, Shimizu, & Doupe, 1995).  Yet is unclear how OT may interact with NE to 

constitute either a cohesive mechanism, or an alternate complimentary action, during the 

formation and maintenance of pairbonds.  Previous studies on the relationship between OT and 

NE has been largely done in the rat, which is a non-monogamous species (Petersson et al., 1998; 
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Diaz-Cabiale et al. 2000), limiting the validity of conclusions when extended to human 

relationships.  Thus, the present study was designed to address these limitations and to expand 

our current understanding of the neural basis of monogamous social behavior.  Furthermore, we 

employed a method to quantify ZENK expression as a marker of behavior-specific expression of 

NE.   

Method 

Subjects  

 Subjects were adult wild-type zebra finches (Taeniopygia guttata) raised in social 

aviaries. Subjects were randomly chosen from same-sex cages and randomly assigned to the 

OTA treated (male n = 6 and female n = 6) and saline treated (male n = 6 and female n = 6) 

groups.  All subjects, regardless of treatment group, were separated from their parents at day 50 

post-hatching and housed in same-sex aviaries until the start of the experiment.  All subjects 

were in good health and had not previously formed a pair relationship. Animals were maintained 

on a timed 12:12 hr light-dark cycle in a temperature (24°C) and humidity (50%) controlled 

room. Seed and water were provided ad libitum. Animals were supplemented with hard-boiled 

chicken egg, calcium-enriched grain (Simple System Breeder Crumb 5-Day Product, The Bird 

Care Company) and fresh chopped greens and fruit once per week. 

Housing 

During tests, subjects were housed in observation cages that were 91.4 ×76.2 × 76.2 cm. 

Each cage contained a water dish, food dish, grit box, perches, four empty nest boxes, and 

nesting materials.   

OTA Treatment 
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Each subject in the treatment group was given a 0.05 ml intramuscular injection of 5 µg 

OTA ([d(CH2)5 1, Tyr(Me)2, Thr4, Orn8, des-Gly-NH2 9]-Vasotocin trifluoroacetate salt, 

Bachem) dissolved in 0.9% saline, which is an accepted administration method (Goodson et al., 

2009; Pederson & Tomaszycki, 2012). The 5 µg dose was chosen because it was the dose that 

caused the largest effect in our earlier study of pairbonding in the zebra finch (Pederson & 

Tomaszycki, 2012).  The time course for this OTA is unknown.  Control animals received 0.05 

ml of 0.9% saline. 

Behavioral Testing 

OT administration has been shown to increase preferences for larger social groups in 

female zebra finches (Goodson et al. 2009). Blocking OT has been shown to decrease pairing 

behavior in both sexes (Pederson & Tomaszycki, 2012; Klatt & Goodson, 2013).  Therefore, we 

decided to test the behavioral effects of OTA administration in a two choice test paradigm (see 

Figure 1).  Based on previous research, we hypothesized that blocking OT would eliminate the 

preference for the opposite sex, as well as for the larger social group. 

The test animals were housed together in a separate cage and were kept in the testing 

room to minimize stress. On the first day of testing, the stimulus animals were selected and 

placed into one of the two-choice condition test cages (Single Test: 1 Male vs. 1 Female and 

Group Test: 4 Males vs. 1 Female, see Figure 1) and the test subject was placed in the middle 

cage.  Each test subject was injected and then placed in the testing cage for 15 minutes to allow 

for habituation and for the drug to take effect. Barriers were placed separating the test cages from 

the stimulus cages. After the 15-minute habituation period, the barriers were removed and the 

subject was tested for 10 minutes. After the testing period, the subject was immediately placed 
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into the second testing condition, with an additional 15 minute waiting period to habituate to the 

testing cage. The subject was then tested for another 10 minutes.   The order of the tests was 

random and was reversed on the second day of testing (i.e. if a subject received the Single Test 

first on day 1, they would receive the Group Test first on day 2).  In each test, preference was 

measured by the amount of time (measured in seconds using a timer) the subject spent in the 

10cm closest to either social situation (as indicated on the perch using a permanent marker).  On 

the second day of testing the same process was repeated and on the third day, the subjects were 

injected and euthanized after 1 hr. 

Brain Collection 

Please reference Ch.4 for details  

Probe Preparation  

Please reference Ch.4 for details  

Dot Blot Assay 

 Please reference Ch.4 for details   

In Situ Hybridization and Immunocytochemistry (ICC) 

Please reference Ch.4 for details  

Quantification 

Please reference Ch.4 for details. 

Data Conditioning and Statistical Analysis 

All data were analyzed in SPSS v.22 (SPSS Inc. 2013, Chicago, IL). Prior to analysis, the 

mean number of cells expressing ADRA (2c for males and 1d for females), ZENK, and co-

localization of ADRA and ZENK across regions were log-transformed to address non-normality. 
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Differences in behavior by treatment were tested in a 4 (Condition: Proportion of time spent near 

a single same-sex bird in the Single Test, Proportion of time spent near the opposite-sex bird in 

the Single Test 1, Proportion of time spent near the same-sex group in the Group Test, 

Proportion of time spent near opposite-sex bird in the Group Test) x 2 (treatment group: OTA, 

Saline) x 2 (sex: Male, Female) multivariate analysis of variance (MANOVA).  Significant 

differences between conditions were followed up with independent t-tests.  Differences in 

behavior by treatment were tested in a 3 (cell expression: ADRA, ZENK, co-localization) x 2 

(treatment group: OTA, Saline).  The 3 x 2 MANOVA was repeated for each brain region 

separately to avoid multi-collinearity.  Due to the sexual dimorphism of brain regions, these 

analyses were necessarily conducted for males and females separately. 

Results 

Two-choice Behavioral Results 

The first analysis of differences in behavior by condition, treatment, and sex were 

conducted using a 4 x 2 x 2 MANOVA. There was no significant effect of OTA treatment (F3, 12 

= 0.63, p = 0.612), Day (F3, 12 = 2.65, p = 0.096), or between sexes (F3, 12 = 1.44, p = 0.240) on 

condition.  Therefore, these variables were not included in post-hoc analyses.   

Overall, there was a significant main effect of experimental condition.  During the Group 

Test, subjects demonstrated a preference for an opposite-sex bird (percentage of time: M = 

31.2%, SE = 0.03) as compared to a group of same-sex birds (percentage of time: M = 13.3%, 

SE = 0.03): t (15) = -4.02, p ≤ 0.001.  This effect may be partially explained by a subject's 

preference for a single bird over a group, as there was greater preference for a single opposite-

sex bird in the Single Test as compared to the group of same-sex birds in the group Test (t(15) = 
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-4.10, p ≤ 0.001).  However, the time spent in proximity to the single same-sex bird in the Single 

Test and group of same-sex birds in the Group Test was similar (t(15) = 1.98, p = 0.07).  

Furthermore, when choosing between a single opposite-sex bird and same-sex bird (M = 7.98%, 

SE = 0.02) in the Single Test, subjects had a preference for the opposite-sex (t(15) = 6.05, p ≤ 

0.001). The preference for the opposite-sex bird was equivalent between tests (t(15) = -0.35, p = 

0.73).  

Effect of OTA Treatment on ADRA2c mRNA, ZENK-ir, and co-expression in the Male Zebra 

Finch 

 OTA treatment significantly lowered ADRA2c mRNA in the anterior forebrain pathway 

(AFP), which contains Area X and LMAN.  There was a significant effect of OTA treatment on 

ADRA2c mRNA in Area X (F1,16 = 11.49, p = 0.004). Males treated with OTA had significantly 

fewer cells expressing ADRA2c mRNA than males treated with saline (see Figure 2).  OTA 

treatment had no significant effect on ZENK-ir (F1,16 = 1.04, p = 0.32) or co-expression (F1,16 = 

0.01, p = 0.94) in Area X.  The effect of OTA treatment on ADRA2c mRNA in LMAN was also 

statistically significant after correction for multiple comparisons (F1,16 = 6.93, p = 0.02, see 

Figure 2).  OTA treatment had no significant effect on ZENK-ir (F1,16 = 0.24, p = 0.63) or co-

expression (F1,16 = 0.19, p = 0.67) in LMAN. 

In the sensorimotor pathway, including HVC and RA, there was no significant effect of 

OTA treatment.  In the HVC of male zebra finches, OTA treatment had no significant effect on 

ADRA2c mRNA (F1,16 = 0.73, p = 0.41), ZENK-ir (F1,16 = 0.001, p = 0.97), or co-expression 

(F1,16 = 0.008, p = 0.93, see Figure 3).  This was also true in the RA: ADRA2c mRNA (F1,16 = 
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0.04, p = 0.85), ZENK-ir (F1,16 = 0.42, p = 0.53), and co-expression (F1,16 = 0.01, p = 0.92) were 

not significant (see Figure 3).   

Effect of OTA Treatment on ADRA1d mRNA, ZENK-ir, and co-expression in the Female Zebra 

Finch 

 Female zebra finches treated with OTA showed a significant effect of OTA treatment on 

ADRA1d mRNA in the NCM (F1,16 = 6.88, p = 0.02), such that OTA treated females had fewer 

cells expressing ADRA1d  than did saline treated females (see Figure 4).  There was a similar 

finding in the CMM (F1,16 = 5.32, p = 0.04, see Figure 4).  OTA treatment had no significant 

effect on ZENK-ir (F1,16 = 0.01, p = 0.95) or co-expression (F1,16 = 0.35, p = 0.56) in NCM or in 

the CMM (ZENK-ir: F1,16 = 0.90, p = 0.36, co-expression: F1,16 = 4.55, p = 0.06,see Figure 4). 

Discussion 

Behavioral Effects of OTA Treatment 

 The two-choice mechanism used for this study was based on a similar design used in 

Goodson, Schrock, et al. (2009) to assess the effects of OT on social flocking behavior in zebra 

finches.  Their paradigm gave the subject a choice between two or ten same sex conspecifics.  

Previous work from our lab has shown that administration of an OTA increased latency to pair in 

both sexes, indicating that OT could affect partner preference.  To test this behavioral effect of 

OT, we used the two-choice paradigm in two contexts.  To test for partner preference, subjects 

were given a choice between an opposite sex bird or a same sex bird.  In the second paradigm, 

the subject was given a choice between an opposite sex bird and 4 same sex birds  (see Figure 1 

for a visual depiction of the experimental design). 
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Across treatment groups, birds consistently showed a preference for the opposite-sex in 

the two-choice tests.  Regardless of the comparison to a single same-sex bird or a group of same-

sex birds, subjects preferred a single opposite-sex bird.  Based upon previous reports of OTA 

treatment increasing latency to pair (Pedersen and Tomaszycki 2012) and decreased likelihood of 

remaining paired (Klatt and Goodson 2013), we had expected OTA treatment to affect partner 

preference.  This was not supported in the present analyses.  It is plausible that OT does not 

modify preference, but affects courtship display and perception.  Specifically, OTA treatment 

may alter behavior in social relationships, but not sexual preference.  It is also possible that the 

preference for the single opposite sex bird versus the four same sex birds was not the result of a 

sexual preference, but actually a demonstration of social preference.  The OTA may have 

affected the subjects’ preference for larger social groups.  Further study with additional 

experimental manipulations than included here is necessary to test this hypothesis. A two-choice 

paradigm is artificial and findings from these types of experimental designs do not always 

translate to semi-naturalistic settings (Tomaszycki & Adkins-Regan, 2005). 

Effects of OTA Treatment in Male Zebra Finches 

This is the first experiment to demonstrate a relationship between oxytocin and 

norepinephrine in the zebra finch brain.  We hypothesized that MT (the avian homologue of OT) 

modulates the noradrenergic system by increasing ADRA mRNA. This hypothesis was based on 

findings in rodents that subchronic treatment with OT increases the responsiveness of ADRA2 to 

an alpha2 agonist in the PVN (Diaz-Cabiale et al. 2000), and the LoC (Petersson et al., 1998).  

We find a similar relationship between OT and the noradrenergic system in that OTA 

administration decreased ADRA mRNA.  We have extended the extant literature by replicating 
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the effect across the sexes and identified effects in specific brain regions of the avian song and 

auditory systems.   

Although the OTA treatment did not affect partner preference in the choice paradigm, it 

did affect the noradrenergic system. OTA administration significantly lowered ADRA2c mRNA 

in the anterior forebrain pathway (AFP) of male zebra finches, but not in the sensorimotor 

pathway.  Therefore, the modulatory effect of OT on NE may be specific to the part of male song 

system that is directly relevant for courtship and social behaviors, as the AFP is important in 

evaluating song feedback and modifying vocal output (Solis, Brainard et al. 2000).  The effects 

of OTA on ZENK-ir and co-expression were not significant and we cannot determine if the 

effect on ADRA2c in the song regions was due to song production. Typically, ZENK-ir is low 

when males are engaged in directed singing toward another female or male, but high during solo 

song (Jarvis et al., 1998, Kimpo & Doupe, 1997). The null effect here may be an artifact created 

from the two-choice paradigm design in which a single opposite-sex bird was always present.   

 A null effect of ZENK-ir and co-expression in these regions may also be explained by 

alternate pathways by which nonapeptides may modulate the noradrenergic system in the zebra 

finch brain. OT has been implicated in sociality and the formation of a monogamous pairbond 

(Goodson, Schrock et al. 2009; Pedersen and Tomaszycki 2012; Klatt and Goodson 2013; 

Lowrey & Tomaszycki, 2014).  The selectivity of the OTA used in the present experiment is 

unknown, and it is possible that it could be acting at any of the VT receptors (Goodson et al., 

2004, 2009; Leung 2009, 2011; Young & Flanagan-Cato, 2012), and we may have a limited 

measurement of OT action.  
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 Based on our results, an alternate indirect pathway of OT modulating NE is plausible.  

For example, nonapeptides are released from the PVN (Koob and Bloom 1982).  PVN 

expression may affect song areas indirectly via efferent projections to VTA in avian species 

(Korf 1984), which is known to connect with Area X, HVC, and RA (Castelino and Ball 2005; 

Castelino, Diekamp et al. 2007).  There may be additional direct interactions in specific regions.  

Without additional study of VT receptors, the mechanism of interaction between nonapeptide 

and noradrenergic systems remains unknown. 

The indirect interaction between these two systems may occur, in part, through 

modification of the sensorimotor pathway, including regions HVC and RA.  The sensorimotor 

pathway is necessary for normal song production throughout life and includes the HVC and RA 

(Solis, Brainard et al. 2000).  Yet, OTA administration did not affect ADRA2c in HVC or RA.  

The cause of the null effect is unclear, but it is plausible that the modulation of NE by OT in the 

anterior forebrain is a larger effect.  The anterior forebrain is a circuit connecting the basal 

ganglia and forebrain, including Area X and LMAN, and it is important in evaluating song 

feedback and modifying vocal output (Solis, Brainard et al. 2000).  Neurons in these song system 

nuclei are activated when the bird is singing (Solis, Brainard et al. 2000; Bolhuis and Gahr 

2006).  However, Area X has been specifically implicated in the motivational aspects of directed 

song (Barclay and Harding 1988; Castelino and Ball 2005; Alger, Juang et al. 2011).  Previous 

studies of OTA administration support a decrease in motivation to pair and to remain paired 

(Pedersen and Tomaszycki 2012; Klatt and Goodson 2013), but here there was no effect on 

partner preference.  Therefore, the effect of nonapeptides on social behaviors via the 
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noradrenergic system may be more specific to motivational aspects, rather than sensorimotor 

functions in song production or sexual preference.   

Effects of OTA Treatment in Female Zebra Finches 

 OTA treatment resulted in lower levels of ADRA1d mRNA in female zebra finches in 

both auditory areas, NCM and CMM.  In female zebra finches, who do not sing, the evaluation 

of male directed song is an extremely important factor in the formation of a pair bond (Riebel, 

2000; 2003; Zann, 1999; Tomaszycki & Adkins-Regan, 2005).  The auditory brain regions NCM 

and CMM are the neural substrates of this evaluation function.  ADRA1d is the most prevalent 

receptor in the NCM and is in more song-responsive cells in the NCM than other receptor types 

(Velho et al. 2012).  OTR are expressed in the NCM and CMM (Leung et al. 2011), which led us 

to hypothesize that MT modulates ADRA1d mRNA directly in these areas.  We present evidence 

that supports a relationship between MT and NE in NCM and CMM.  The NCM and CMM have 

specialized function for song recognition (Mello, Vicario et al. 1992; Mello and Clayton 1994; 

Bolhuis, Zijlstra et al. 2000) and thus nonapeptides may modify female song perception via 

interaction with the noradrenergic system. 

 However, OTA treatment did not significantly affect female behavior in the two-choice 

task.  Previous study has shown that MT mRNA is elevated in the PVN of paired females 

(Lowrey & Tomaszycki, 2014) and treatment with an OTA increased latency to pair and 

decreased pair formation, especially in females (Pedersen & Tomaszycki, 2012).  There is also 

evidence that destroying NE fibers alters females’ ability to evaluate male song and decreases the 

likelihood to pair (Appeltants, Del Negro et al. 2002; Vahaba, Lacey, & Tomaszycki, 2013; 

Vyas, Harding et al. 2008).  However, we did not assess these aspects of courtship behavior. The 
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two-choice test only determines preference, so we cannot presently comment on possible 

differences in motivation or pairing behaviors in females.  Therefore, it is likely that 

nonapeptides act upon the noradrenergic system in the NCM and CMM to alter female song 

perception that is reflected in pairing behavior, but not preference.  This may be a result of the 

un-naturalistic nature of the two-choice paradigm. 

Conclusion 

 This novel study is the first to investigate the relationship between MT and NE in the 

zebra finches.  We found that treatment with an OTA lowers ADRA mRNA in both sexes.  

ADRA2c mRNA was lower in Area X and LMAN of treated males and ADRA1d mRNA was 

lower in the NCM and CMM of treated females.  However, OTA administration did not affect 

preference within a two-choice paradigm.  We discuss alternate mechanisms of action of the 

nonapeptide system on pairing via the noradrenergic system. 
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Figure 5.1. Model of the experimental design for males and females. 
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Figure 5.2. Examples of ADRA2c mRNA and ZENK-ir in Area X and LMAN of adult male 

zebra finches treated with OTA or saline. 400X magnification.  Bar graphs represent the mean 

number of ADRA2c mRNA, ZENK-ir, and ADRA2c+ZENK cells for Area X and LMAN of 

adult male zebra finches treated with OTA or saline.  Statistical significance is indicated by the * 

and error bars represent the standard error. 
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Figure 5.3. Examples of ADRA2c mRNA and ZENK-ir in HVC and RA of adult male zebra 

finches treated with OTA or saline. 400X magnification.  Bar graphs represent the mean number 

of ADRA2c mRNA, ZENK-ir, and ADRA2c+ZENK cells for HVC and RA of adult male zebra 

finches treated with OTA or saline.  Statistical significance is indicated by the * and error bars 

represent the standard error. 
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Figure 5.4. Examples of ADRA1d mRNA and ZENK-ir in NCM and CMM of adult female 

zebra finches treated with OTA or saline. 400X magnification.  Bar graphs represent the mean 

number of ADRA1d mRNA, ZENK-ir, and ADRA1d+ZENK cells for NCM and CMM of adult 

female zebra finches treated with OTA or saline.  Statistical significance is indicated by the * 

and error bars represent the standard error. 
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CHAPTER 6-SUMMARY OF FINDINGS AND GENERAL DISCUSSION 

 
Hypothesis for Ch.2:  Creating a social relationship, such as a monogamous pairbond, will 

increase nonapeptide expression in the PVN and BSTm of both male and female zebra finches.  

The first experiment supported our original hypothesis and established that the 

nonapeptides MT and VT are involved in the formation of social relationship in both male and 

female zebra finches.  Forming a monogamous pair bond resulted in higher MT mRNA and VT 

mRNA levels in the PVN of both male and female zebra finches.  Increased MT and VT mRNA 

in the PVN of males was driven primarily by directed singing behavior, which plays a significant 

role in courtship.  Increased MT mRNA in the PVN of females was driven primarily by 

clumping, which is a significant measure of female choice (Zann, 1996).  These findings are 

important because the PVN is responsible for simultaneous secretion of nonapeptides into the 

bloodstream and the brain (Goodson, 2005; Neumann, 2002). The nonapeptides oxytocin (OT) 

and vasopressin (AVP) are widely implicated in social behavior (Donaldson & Young, 2008; 

Goodson & Thompson, 2010; Young & Wang, 2004).  Therefore, MT and VT likely play a 

significant role in the formation of social relationships in both male and female zebra finches. 

Hypothesis for Ch.3: Forming a social relationship, such as a monogamous pairbond, increases 

expression of catecholaminergic protein in the social behavior networks and auditory regions of 

both male and female zebra finches. 

In males, we found increased TH+ZENK-ir in Area X of paired males versus unpaired 

males.  This is consistent with previous findings and our hypothesis.  However, none of the other 

song or social behavior areas was significantly different as a result of pairing.  Also, none of the 

courtship or pairing behaviors were related to expression in Area X.  In paired females, there 
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were decreased levels of TH+ZENK-ir in the VMH and increased levels in the VTAc.  In the 

VTAc of paired females, TH+ZENK-ir was positively associated with nesting behavior and 

TH+ZENK-ir was positively associated with clumping.  Nesting behavior involves both partners 

and is shared activity between bonded partners whereas clumping is a sign of female choice and 

initially occurs earlier in the pairing process (Zann, 1996), which would be considered a 

production of pairing behavior.  It may be that female brain areas react differently throughout the 

formation of the relationship — such that activity in areas associated with social behavior, such 

as the VMH, may peak during courtship and areas involved in sexual reward, such as the VTA, 

may peak during the transition to a pairbond and preparation for parenthood. 

We found some evidence to support our hypothesis, but the majority of the areas we 

expected to have increased TH+ZENK-ir in paired birds were not significant, such as song areas 

LMAN and HVC, reward area SN, and auditory area CMM.  Further study would be needed to 

determine if dopamine is playing a significant role in the courtship and pairing process. 

Hypothesis for Ch.4:  Creating a social relationship, such as a monogamous pairbond, will 

increase activation of noradrenergic receptors in song and auditory regions of both male and 

female zebra finches.  

The results of our previous study were not fully supportive of our hypothesis, so to fully 

understand catecholaminergic interactions with courtship and pairing behaviors, we decided to 

investigate the effect of pairing on noradrenergic receptor class ADRA.  We found that paired 

males had increased levels of ADRA2c+ZENK-ir co-expression in Area X and LMAN compared 

to unpaired males.  Paired females also showed increased levels of ADRA1d mRNA expression 

in NCM and CMM.  Together, these findings do suggest that NE is active during the formation 
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of social relationships in both male and female zebra finches. Based on these findings, NE is 

likely involved in the formation of social relationships in zebra finches given the prevalence of 

NE in the brain - which contains 10 times the amount of NE compared to mammals (Barclay and 

Harding 1988; Waterman and Harding 2008).  

In our previous study, TH-ZENK-ir co-expression was higher in Area X of paired than 

unpaired male zebra finches.  The same birds were used in this study, but molecular markers 

were used for the noradrenergic receptor, ADRA2c, instead of TH-ir (which is a more general 

marker of catecholaminergic action).  Therefore, all behavioral observations and levels of ZENK 

are consistent across these two studies.  This means that the TH+ZENK-ir from Ch.3 could 

indicate noradrenergic action, as pairing had a significant effect on ADRA2c levels.  It is also 

possible that both DA and NE are acting in concert in Area X during the courtship and pairing 

process, as Area X contains innervations of both fibers.  However, due to the fact that 

ADRA2c+ZENK co-expression is higher in paired birds in both Area X and LMAN in the 

present study, it is likely that the TH+ZENK-ir increase seen in the same paired bird in our 

previous study was a result of NE action in Area X. 

Hypothesis for Ch.5:  OT modulates expression of noradrenergic mRNA expression in both male 

and female zebra finches and effects social choice in both sexes. 

The final experiment in this series was designed to bring the previous findings together 

and establish a relationship between OT and NE in the formation of social relationship in the 

zebra finch.  Blocking OT using an antagonist caused a decrease in ADRA2c mRNA levels in 

Area X of males and ADRA1d mRNA in the NCM and CMM of females.  Given that the 

previous experiment showed that pairing increased mRNA levels in these same areas, this is 
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strong evidence the OT has a significant effect on NE during the formation of social 

relationships in the zebra finch. 

Previous findings in rodents show that subchronic treatment with OT increases the 

responsiveness of ADRA2 to an alpha2 agonist in the PVN (Diaz-Cabiale et al. 2000), and the 

LoC (Petersson et al., 1998).  Findings from avian neuroanatomy (Korf, 1984) demonstrate that 

the PVN (the site of OT release) directly innervates the VTA (a reward area), and LoC (the site 

of NE release).  The LoC has direct noradrenergic innervations to the VTA (Mello, Pinaud, & 

Ribeiro, 1998) and Area X (Castelino, Diekamp, & Ball, 2007).  Therefore, there are several 

possible routes for OT to affect NE.  Therefore, I hypothesized that exogenous MT (originating 

in the PVN) is released in response to courtship behaviors, specifically directed song, and 

increases the level of ADRA2c mRNA in male zebra finches, which is the most prevalent 

receptor class within the song system (Velho et al., 2012).  In female zebra finches, ADRA1d is 

the most prevalent receptor in the NCM and was found in more song-responsive cells in the 

NCM than other receptor types (Velho et al. 2012).  MT receptors have also been found in the 

NCM and CMM (Leung et al. 2011).  Therefore, I hypothesized that exogenous MT (originating 

in the PVN) is released in response to courtship behaviors and increases the level of ADRA1d 

mRNA in auditory regions of female zebra finches.  My findings support these hypotheses. 

Conclusions and Future Directions 

The relationship between OT and NE systems in the formation of social relationships is 

complex and deserves further study to verify the results found in the present collection of studies.  

I believe that larger samples are needed in future research to confirm the findings presented here 

and to allow for more complex statistical testing.  Other methods of measuring molecular activity 



www.manaraa.com

115 

 

 

would also be useful for validating the present findings, such as HPLC, tract tracing, viral 

vectors, IEG, etc.  My studies are part of a small group of research that has been done on social 

behavior in female animals.  Little is known about female behavior, particularly in the zebra 

finch.  Further study with female zebra finches can help us to design better experimental designs 

that elucidate the complex and subtle behavior of these fascinating social creatures. 

The role of nonapeptides in social relationships has been well studied, but the role of NE 

is not understood.  ADRA2c mRNA is localized to the basal ganglia, cerebral cortex and 

hippocampus (Scheinin et al., 1994), brain areas involved in memory processing.  Activation of 

ADRA2c increases the synthesis of glycogen in the forebrain and inhibiting glycogen breakdown 

impairs memory formation (Gibbs, Hutchinson, & Hertz, 2008; Hutchinson, Gibbs, & Summers, 

2008).  ADRAs have been implicated in memory processing (Scheinin et al., 1994; Gibbs, 

Hutchinson, & Hertz., 2008; Hutchinson, Gibbs, & Summers, 2008; Gibbs, Hutchinson, & 

Summers, 2010) and in the song system (Riters & Ball, 2002; Cornil, Castelino, & Ball, 2008).  

Therefore, I hypothesize that NE and OT are interacting through ADRA receptors to affect social 

memory, which is necessary for the formation of social relationship. 

In males, hypothesis for Ch.2 was supported by the findings that forming a pairbond was 

associated with increases in MT and VT mRNA in the PVN, the site of nonapeptide synthesis,  

and VT mRNA in the BSTm, a part of the social behavior network.  This finding indicates that 

the nonapeptides are involved in the formation of the pairbond.  TH+ZENK-ir was higher in 

Area X of paired than unpaired males, which partially supported hypothesis for Ch. 3 and a 

similar pattern was found in the expression of ADRA2c+ZENK-ir in Area X and LMAN, which 

supported hypothesis for Ch. 4.  These findings suggest that NE is active in the song areas of 
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male zebra finches during the pairing process.  It is possible that the TH+ZENK-ir activation 

seen in the second experiment was DA and not NE, as TH+ZENK-ir expression was not 

significantly different in the LMAN of paired and unpaired males.  Blocking OT significantly 

decreased levels of ADRA2c mRNA in males, supporting hypothesis for Ch. 5 and indicating 

that there is a relationship between OT and NE in the zebra finch brain.  This finding is similar to 

previous research in rodents, so these findings are the first to show such results in a socially 

monogamous species, such as the zebra finch.   

Similar to males, paired female zebra finches also exhibited increased levels of MT and 

VT mRNA in the PVN, supporting hypothesis for Ch. 2 and indicating that nonapeptides play a 

role in pairbond formation.  ZENK-ir levels were higher in the NCM and VMH of paired 

females, but lower in the VTA compared to unpaired females, indicating that the NCM and 

VMH are more active during the first 48 hours of pairbond formation.  TH+ZENK-ir levels were 

higher in the VTAc of paired females, but lower in the VMH compared to unpaired females.  

This indicates that DA was more active in the VTAc of paired females during pairbond 

formation.  Together, these findings partially supported hypothesis for Ch. 3 and indicate that 

areas of the female brain are selectively activated during the pairing process.  Paired females 

exhibited higher levels of ADRA1d in the NCM and CMM than unpaired females, which 

supports hypothesis 4 and indicates that NE is effected by the pairing process.  Given that only 

ZENK-ir was significant in the NCM of paired females in Ch. 3, it is likely that this was driven 

by NE activity rather than DA activity, as TH-ir and TH+ZENK-ir were not significant in the 

study.  In the final study, blocking OT was related to decreased levels of ADRA1d in the NCM 

and CMM, supporting hypothesis for Ch. 5.  These results demonstrate that both OT and NE are 
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involved in the formation of pairbonds in female zebra finches and that a relationship exists 

between OT and NE, involving ADRA1d receptors. 

Better understanding the relationship between OT and NE activation in relation to social 

relationships has significant impacts on the study of psychological disorders.  There are several 

disorders that have been linked to both OT and NE, such as depression, anxiety, schizophrenia, 

and autism (Castelino and Schmidt 2010; Cochran, Fallon, et al., 2013).  One of these disorders 

in particular, autism, is characterized by abnormalities in speech and communication, impaired 

social functioning, and restricted interests (American Psychiatric Association, 2000).   One study 

found that administering OT to male humans clinically diagnosed with autism facilitated the 

processing and retention of social information, specifically the comprehension of affective 

speech (Hollander, Bartz, et al., 2007).  Previous animal research has shown that OT is related to 

social recognition (Dluzen, Muraoka, & Landgraf, 1998) and social memory (Griffin & Taylor, 

1995) in the rat.  Given that NE action at ADRA receptors is implicated in memory processing 

(Scheinin et al., 1994; Gibbs, Hutchinson, & Hertz., 2008; Hutchinson, Gibbs, & Summers, 

2008; Gibbs, Hutchinson, & Summers, 2010) and that previous research and our current findings 

show that blocking OT has an effect on ADRA action, it is highly likely that NE and OT are 

interacting through ADRA receptors to affect social memory.  This mechanism may be 

responsible for disturbances in social memory formation and even more broadly, social 

cognition, as seen in autism spectrum disorder.  The results of the current group of studies are the 

first step toward understanding the role of NE and OT in the formation of social relationships.  

Further study is warranted, as there may be implications for psychological disorders, such as 

autism. 



www.manaraa.com

118 

 

 

 

  



www.manaraa.com

119 

 

 

REFERENCES 

Alger, S. J., Juang, C., & Riters, L. V. (2011). Social affiliation relates to tyrosine hydroxylase 

immunolabeling in male and female zebra finches (< i> Taeniopygia guttata</i>). Journal of 

chemical neuroanatomy, 42(1), 45-55. 

American Psychiatric Association. (2000). American Psychiatric Association. Diagnostic and 

Statistical Manual of Mental Disorders (4th ed.) American Psychiatric Association, Washington, 

DC. 

Appeltants, D., Ball, G. F., & Balthazart, J. (2001). The distribution of tyrosine hydroxylase in 

the canary brain: demonstration of a specific and sexually dimorphic catecholaminergic 

innervation of the telencephalic song control nuclei. Cell and tissue research, 304(2), 237-259. 

Appeltants, D., Del Negro, C., & Balthazart, J. (2002). Noradrenergic control of auditory 

information processing in female canaries. Behavioural brain research,133(2), 221-235. 

Aragona, B. J., & Wang, Z. (2009). Dopamine regulation of social choice in a monogamous 

rodent species. Frontiers in behavioral neuroscience, 3. 

Arnold, A. P., & Lusis, A. J. (2012). Understanding the sexome: measuring and reporting sex 

differences in gene systems. Endocrinology, 153(6), 2551-2555. 

Aston-Jones, G., & Bloom, F. E. (1981). Activity of norepinephrine-containing locus coeruleus 

neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. The Journal of 

Neuroscience, 1(8), 876-886. 

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine 

function: adaptive gain and optimal performance.Annu. Rev. Neurosci., 28, 403-450. 



www.manaraa.com

120 

 

 

Barclay, S. R., & Harding, C. F. (1988). Androstenedione modulation of monoamine levels and 

turnover in hypothalamic and vocal control nuclei in the male zebra finch: steroid effects on 

brain monoamines. Brain research, 459(2), 333-343. 

Barclay, S. R., Harding, C. F., & Waterman, S. A. (1996). Central DSP-4 treatment decreases 

norepinephrine levels and courtship behavior in male zebra finches. Pharmacology Biochemistry 

and Behavior, 53(1), 213-220. 

A Bartz, J., & Hollander, E. (2006). The neuroscience of affiliation: forging links between basic 

and clinical research on neuropeptides and social behavior.Hormones and Behavior, 50(4), 518-

528. 

Bartz, J., Simeon, D., Hamilton, H., Kim, S., Crystal, S., Braun, A.,& Hollander, E. (2010). 

Oxytocin can hinder trust and cooperation in borderline personality disorder. Social cognitive 

and affective neuroscience. 

Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U., & Fehr, E. (2008). Oxytocin 

shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 58(4), 639-650. 

Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic 

impact, reward learning, or incentive salience?. Brain Research Reviews, 28(3), 309-369. 

Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus–noradrenergic system: 

modulation of behavioral state and state-dependent cognitive processes. Brain Research 

Reviews, 42(1), 33-84. 

Bolhuis, J. J., Zijlstra, G. G., den Boer-Visser, A. M., & Van der Zee, E. A. (2000). Localized 

neuronal activation in the zebra finch brain is related to the strength of song 

learning. Proceedings of the National Academy of Sciences,97(5), 2282-2285. 



www.manaraa.com

121 

 

 

Bolhuis, J. J., Hetebrij, E., Boer‐Visser, D., Ardie, M., De Groot, J. H., & Zijlstra, G. G. (2001). 

Localized immediate early gene expression related to the strength of song learning in socially 

reared zebra finches. European Journal of Neuroscience, 13(11), 2165-2170.  

Bolhuis, J. J., & Eda-Fujiwara, H. (2003). Bird brains and songs: neural mechanisms of birdsong 

perception and memory. ANIMAL BIOLOGY-LEIDEN-,53, 129-146. 

Bolhuis, J. J., & Gahr, M. (2006). Neural mechanisms of birdsong memory.Nature Reviews 

Neuroscience, 7(5), 347-357. 

Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: converging mechanisms in 

birdsong and human speech. Nature Reviews Neuroscience,11(11), 747-759. 

Bosch, O. J., Meddle, S. L., Beiderbeck, D. I., Douglas, A. J., & Neumann, I. D. (2005). Brain 

oxytocin correlates with maternal aggression: link to anxiety.The Journal of 

neuroscience, 25(29), 6807-6815. 

Castelino, C. B., & Ball, G. F. (2005). A role for norepinephrine in the regulation of context‐

dependent ZENK expression in male zebra finches (Taeniopygia guttata). European Journal of 

Neuroscience, 21(7), 1962-1972. 

Castelino, C. B., & Schmidt, M. F. (2010). What birdsong can teach us about the central 

noradrenergic system. Journal of chemical neuroanatomy, 39(2), 96-111. 

Catchpole, C. K., & Slater, P. J. B. Bird Song: Biological Themes and Variations, 

1995. Cambridge University, Cambridge. 

Cecchi, G. A., Ribeiro, S.,s Mello, C.V. & Magnasco, M.O. (1999). An automated procedure for 

the mapping and quantitative analysis of immunocytochemistry of an inducible nuclear protein',. 

Journal of Neuroscience Methonds, 87 147-158. 



www.manaraa.com

122 

 

 

Chen, G., Gharib, T. G., Huang, C. C., Taylor, J. M., Misek, D. E., Kardia, S. L., & Beer, D. G. 

(2002). Discordant protein and mRNA expression in lung adenocarcinomas. Molecular & 

Cellular Proteomics, 1(4), 304-313. 

Cho, M. M., DeVries, A. C., Williams, J. R., & Carter, C. S. (1999). The effects of oxytocin and 

vasopressin on partner preferences in male and female prairie voles (< em> Microtus 

ochrogaster</em>). Behavioral neuroscience, 113(5), 1071. 

Churchland, P. S., & Winkielman, P. (2012). Modulating social behavior with oxytocin: how 

does it work? What does it mean?. Hormones and behavior,61(3), 392-399. 

Cochran, D., Fallon, D., Hill, M., & Frazier, J. A. (2013). The role of oxytocin in psychiatric 

disorders: A review of biological and therapeutic research findings. Harvard Review of 

Psychiatry, 21(5), 219–247. 

Cornil, C. A., Castelino, C. B., & Ball, G. F. (2008). Dopamine binds to α< sub> 2</sub>-

adrenergic receptors in the song control system of zebra finches (< i> Taeniopygia 

guttata</i>). Journal of chemical neuroanatomy, 35(2), 202-215. 

Coull, J. T., Büchel, C., Friston, K. J., & Frith, C. D. (1999). Noradrenergically mediated 

plasticity in a human attentional neuronal network. Neuroimage, 10(6), 705-715. 

Cubells, J. F., Sun, X., Li, W., Bonsall, R. W., McGrath, J. A., Avramopoulos, D., & Elston, R. 

C. (2011). Linkage analysis of plasma dopamine β-hydroxylase activity in families of patients 

with schizophrenia. Human genetics,130(5), 635-643. 

Curley, J. P., & Keverne, E. B. (2005). Genes, brains and mammalian social bonds. Trends in 

ecology & evolution, 20(10), 561-567. 



www.manaraa.com

123 

 

 

Davis, H. P., & Squire, L. R. (1984). Protein synthesis and memory: a review.Psychological 

bulletin, 96(3), 518. 

De Dreu, C. K., Greer, L. L., Handgraaf, M. J., Shalvi, S., Van Kleef, G. A., Baas, M., & Feith, 

S. W. (2010). The neuropeptide oxytocin regulates parochial altruism in intergroup conflict 

among humans. Science, 328(5984), 1408-1411. 

De Dreu, C. K., Greer, L. L., Van Kleef, G. A., Shalvi, S., & Handgraaf, M. J. (2011). Oxytocin 

promotes human ethnocentrism. Proceedings of the National Academy of Sciences, 108(4), 1262-

1266. 

del Campo, N., Chamberlain, S. R., Sahakian, B. J., & Robbins, T. W. (2011). The roles of 

dopamine and noradrenaline in the pathophysiology and treatment of attention-

deficit/hyperactivity disorder. Biological psychiatry, 69(12), e145-e157. 

Delgado, M. R. (2008). Fool me once, shame on you; fool me twice, shame on 

oxytocin. Neuron, 58(4), 470-471. 

De Vries, G. J., & Panzica, G. C. (2006). Sexual differentiation of central vasopressin and 

vasotocin systems in vertebrates: different mechanisms, similar endpoints. Neuroscience, 138(3), 

947-955. 

Dı́az-Cabiale, Z., Petersson, M., Narváez, J. A., Uvnäs-Moberg, K., & Fuxe, K. (2000). Systemic 

oxytocin treatment modulates α2-adrenoceptors in telencephalic and diencephalic regions of the 

rat. Brain research, 887(2), 421-425. 

Ditzen, B., Schaer, M., Gabriel, B., Bodenmann, G., Ehlert, U., & Heinrichs, M. (2009). 

Intranasal oxytocin increases positive communication and reduces cortisol levels during couple 

conflict. Biological psychiatry, 65(9), 728-731. 



www.manaraa.com

124 

 

 

Dluzen, D. E., Muraoka, S., & Landgraf, R. (1998). Olfactory bulb norepinephrine depletion 

abolishes vasopressin and oxytocin preservation of social recognition responses in 

rats. Neuroscience letters, 254(3), 161-164. 

Dominguez, J. M., & Hull, E. M. (2005). Dopamine, the medial preoptic area, and male sexual 

behavior. Physiology & behavior, 86(3), 356-368. 

Donaldson, Z. R., & Young, L. J. (2008). Oxytocin, vasopressin, and the neurogenetics of 

sociality. Science, 322(5903), 900-904. 

Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: common themes and 

mechanisms. Annual review of neuroscience, 22(1), 567-631. 

Dunbar, R. I. (2010). The social role of touch in humans and primates: behavioural function and 

neurobiological mechanisms. Neuroscience & Biobehavioral Reviews, 34(2), 260-268. 

Dutar, P., Vu, H. M., & Perkel, D. J. (1998). Multiple cell types distinguished by physiological, 

pharmacological, and anatomic properties in nucleus HVc of the adult zebra finch. Journal of 

Neurophysiology, 80(4), 1828-1838. 

Eda‐Fujiwara, H., Satoh, R., Bolhuis, J. J., & Kimura, T. (2003). Neuronal activation in female 

budgerigars is localized and related to male song complexity. European Journal of 

Neuroscience, 17(1), 149-154. 

Feldman, R. (2012). Oxytocin and social affiliation in humans. Hormones and behavior, 61(3), 

380-391. 

Ferguson, J. N., Aldag, J. M., Insel, T. R., & Young, L. J. (2001). Oxytocin in the medial 

amygdala is essential for social recognition in the mouse. The Journal of Neuroscience, 21(20), 

8278-8285. 



www.manaraa.com

125 

 

 

Fernández-López, A., del Arco, C., González, A. M., Gómez, T., Calvo, P., & Pazos, A. (1990). 

Autoradiographic localization of< i> α</i>< sub> 2</sub>-adrenoceptors in chick 

brain. Neuroscience letters, 120(1), 97-100. 

Funabiki, Y., & Konishi, M. (2003). Long memory in song learning by zebra finches. The 

Journal of neuroscience, 23(17), 6928-6935. 

Gale, S. D., & Perkel, D. J. (2006). Physiological properties of zebra finch ventral tegmental area 

and substantia nigra pars compacta neurons. Journal of neurophysiology, 96(5), 2295-2306. 

Gale, S. D., Person, A. L., & Perkel, D. J. (2008). A novel basal ganglia pathway forms a loop 

linking a vocal learning circuit with its dopaminergic input.Journal of Comparative 

Neurology, 508(5), 824-839. 

Gentner, T. Q., Hulse, S. H., Duffy, D., & Ball, G. F. (2001). Response biases in auditory 

forebrain regions of female songbirds following exposure to sexually relevant variation in male 

song. Journal of neurobiology, 46(1), 48-58. 

Gibbs, M. E., Hutchinson, D., & Hertz, L. (2008). Astrocytic involvement in learning and 

memory consolidation. Neuroscience & Biobehavioral Reviews,32(5), 927-944. 

Gibbs, M. E., Hutchinson, D. S., & Summers, R. J. (2010). Noradrenaline release in the locus 

coeruleus modulates memory formation and consolidation; roles for α-and β-adrenergic 

receptors. Neuroscience, 170(4), 1209-1222. 

Gingrich B, Liu Y, Cascio C, Wang ZX, Insel TR (2000). Dopamine D2 receptors in the nucleus 

accumbens are important for social attachment in female prairie voles. Behavioral Neuroscience 

114:173–183. 



www.manaraa.com

126 

 

 

Gobes, S. M., Zandbergen, M. A., & Bolhuis, J. J. (2010). Memory in the making: localized 

brain activation related to song learning in young songbirds.Proceedings of the Royal Society B: 

Biological Sciences, rspb20100870. 

Goodson, J. L., & Adkins-Regan, E. (1999). Effect of intraseptal vasotocin and vasoactive 

intestinal polypeptide infusions on courtship song and aggression in the male zebra finch 

(Taeniopygia guttata). Journal of neuroendocrinology, 11, 19-26. 

Goodson, J. L. (2005). The vertebrate social behavior network: evolutionary themes and 

variations. Hormones and Behavior, 48(1), 11-22. 

Goodson, J. L., Evans, A. K., & Wang, Y. (2006). Neuropeptide binding reflects convergent and 

divergent evolution in species-typical group sizes. Hormones and behavior, 50(2), 223-236. 

Goodson, J. L., Rinaldi, J., & Kelly, A. M. (2009). Vasotocin neurons in the bed nucleus of the 

stria terminalis preferentially process social information and exhibit properties that dichotomize 

courting and non-courting phenotypes.Hormones and behavior, 55(1), 197-202. 

Goodson, J. L., & Thompson, R. R. (2010). Nonapeptide mechanisms of social cognition, 

behavior and species-specific social systems. Current opinion in neurobiology, 20(6), 784-794. 

Goodson, J. L. (2013). Deconstructing sociality, social evolution and relevant nonapeptide 

functions. Psychoneuroendocrinology, 38(4), 465-478. 

Greenbaum, D., Colangelo, C., Williams, K., & Gerstein, M. (2003). Comparing protein 

abundance and mRNA expression levels on a genomic scale. Genome Biol, 4(9), 117. 

Griffin, M. G., & Taylor, G. T. (1995). Norepinephrine modulation of social memory: Evidence 

for a time-dependent functional recovery of behavior.Behavioral neuroscience, 109(3), 466. 



www.manaraa.com

127 

 

 

Gygi, S. P., Rochon, Y., Franza, B. R., & Aebersold, R. (1999). Correlation between protein and 

mRNA abundance in yeast. Molecular and cellular biology,19(3), 1720-1730. 

Heimovics, S. A., Cornil, C. A., Ellis, J. M. S., Ball, G. F., & Riters, L. V. (2011). Seasonal and 

individual variation in singing behavior correlates with alpha 2-noradrenergic receptor density in 

brain regions implicated in song, sexual, and social behavior. Neuroscience, 182, 133-143. 

Hessler, N. A., & Doupe, A. J. (1999). Social context modulates singing-related neural activity in 

the songbird forebrain. Nature neuroscience, 2(3), 209-211. 

Hollander, E., Bartz, J., Chaplin, W., Phillips, A., Sumner, J., Soorya, L.,& Wasserman, S. 

(2007). Oxytocin increases retention of social cognition in autism. Biological psychiatry, 61(4), 

498-503. 

Hu, H., Real, E., Takamiya, K., Kang, M. G., Ledoux, J., Huganir, R. L., & Malinow, R. (2007). 

Emotion enhances learning via norepinephrine regulation of AMPA-receptor 

trafficking. Cell, 131(1), 160-173. 

Hutchinson, D. S., Summers, R. J., & Gibbs, M. E. (2008). Energy metabolism and memory 

processing: role of glucose transport and glycogen in responses to adrenoceptor activation in the 

chicken. Brain research bulletin, 76(3), 224-234. 

Jarvis, E. D., & Nottebohm, F. (1997). Motor-driven gene expression.Proceedings of the 

National Academy of Sciences, 94(8), 4097-4102. 

Jarvis, E. D. (2007). Neural systems for vocal learning in birds and humans: a synopsis. Journal 

of Ornithology, 148(1), 35-44. 

Jin, H., & Clayton, D. F. (1997). Localized changes in immediate-early gene regulation during 

sensory and motor learning in zebra finches. Neuron, 19(5), 1049-1059. 



www.manaraa.com

128 

 

 

Kabelik, D., Morrison, J. A., & Goodson, J. L. (2010). Cryptic regulation of vasotocin neuronal 

activity but not anatomy by sex steroids and social stimuli in opportunistic desert finches. Brain, 

behavior and evolution, 75(1), 71-84. 

Kabelik, D., Schrock, S. E., Ayres, L. C., & Goodson, J. L. (2011). Estrogenic regulation of 

dopaminergic neurons in the opportunistically breeding zebra finch.General and comparative 

endocrinology, 173(1), 96-104. 

Kelly, A. M., Kingsbury, M. A., Hoffbuhr, K., Schrock, S. E., Waxman, B., Kabelik, D.,& 

Goodson, J. L. (2011). Vasotocin neurons and septal V< sub> 1a</sub>-like receptors potently 

modulate songbird flocking and responses to novelty. Hormones and behavior, 60(1), 12-21. 

Kimpo, R. R., & Doupe, A. J. (1997). FOS is induced by singing in distinct neuronal populations 

in a motor network. Neuron, 18(2), 315-325. 

Kimura, T., Okanoya, K., & Wada, M. (1999). Effect of testosterone on the distribution of 

vasotocin immunoreactivity in the brain of the zebra finch,< i> Taeniopygia guttata 

castanotis</i>. Life sciences, 65(16), 1663-1670. 

Kitt, C. A., & Brauth, S. E. (1986). Telencephalic projections from midbrain and isthmal cell 

groups in the pigeon. II. The nigral complex. Journal of Comparative Neurology, 247(1), 92-

110. 

Klatt, J. D., & Goodson, J. L. (2013). Oxytocin-like receptors mediate pair bonding in a socially 

monogamous songbird. Proceedings of the Royal Society B: Biological Sciences, 280(1750), 

20122396. 

Knapska, E., & Kaczmarek, L. (2004). A gene for neuronal plasticity in the mammalian brain: 

Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK?. Progress in neurobiology, 74(4), 183-211. 



www.manaraa.com

129 

 

 

Koob, G. F., & Bloom, F. E. (1988). Cellular and molecular mechanisms of drug 

dependence. Science, 242(4879), 715-723. 

Korf, H. W. (1984). Neuronal organization of the avian paraventricular nucleus: intrinsic, 

afferent, and efferent connections. Journal of Experimental Zoology,232(3), 387-395. 

Konishi, M., & Akutagawa, E. (1985). Neuronal growth, atrophy and death in a sexually 

dimorphic song nucleus in the zebra finch brain. 

Kozhevnikov, A. A., & Fee, M. S. (2007). Singing-related activity of identified HVC neurons in 

the zebra finch. Journal of neurophysiology, 97(6), 4271-4283. 

Lee, A., Rosin, D. L., & Van Bockstaele, E. J. (1998). Ultrastructural evidence for prominent 

postsynaptic localization of α2C‐adrenergic receptors in catecholaminergic dendrites in the rat 

nucleus locus coeruleus. Journal of Comparative Neurology, 394(2), 218-229. 

Leitner, S., Voigt, C., Metzdorf, R., & Catchpole, C. K. (2005). Immediate early gene (ZENK, 

Arc) expression in the auditory forebrain of female canaries varies in response to male song 

quality. Journal of neurobiology, 64(3), 275-284. 

Leung, C. H., Abebe, D. F., Earp, S. E., Goode, C. T., Grozhik, A. V., Mididoddi, P., & Maney, 

D. L. (2011). Neural distribution of vasotocin receptor mRNA in two species of 

songbird. Endocrinology, 152(12), 4865-4881. 

Liu, Y., Curtis, J. T., & Wang, Z. (2001). Vasopressin in the lateral septum regulates pair bond 

formation in male prairie voles (< em> Microtus ochrogaster</em>). Behavioral 

neuroscience, 115(4), 910. 



www.manaraa.com

130 

 

 

Lim, M. M., Wang, Z., Olazábal, D. E., Ren, X., Terwilliger, E. F., & Young, L. J. (2004). 

Enhanced partner preference in a promiscuous species by manipulating the expression of a single 

gene. Nature, 429(6993), 754-757. 

Lim, M. M., & Young, L. J. (2004). Vasopressin-dependent neural circuits underlying pair bond 

formation in the monogamous prairie vole. Neuroscience,125(1), 35-45. 

Lipov, E., & Kelzenberg, B. (2012). Sympathetic system modulation to treat post-traumatic 

stress disorder (PTSD): A review of clinical evidence and neurobiology. Journal of affective 

disorders, 142(1), 1-5. 

Lowrey, E. M., & Tomaszycki, M. L. (2014). The formation and maintenance of social 

relationships increases nonapeptide mRNA in zebra finches of both sexes. Behavioral 

neuroscience, 128(1), 61. 

Luo, M., & Perkel, D. J. (1999). A GABAergic, strongly inhibitory projection to a thalamic 

nucleus in the zebra finch song system. The Journal of neuroscience,19(15), 6700-6711. 

Luo, M., & Perkel, D. J. (1999). Long‐range GABAergic projection in a circuit essential for 

vocal learning. Journal of Comparative Neurology, 403(1), 68-84. 

Lynch, K. S., Diekamp, B., & Ball, G. F. (2008). Catecholaminergic cell groups and vocal 

communication in male songbirds. Physiology & behavior, 93(4), 870-876. 

Mabry, K. E., Streatfeild, C. A., Keane, B., & Solomon, N. G. (2011). < i> avpr1a</i> length 

polymorphism is not associated with either social or genetic monogamy in free-living prairie 

voles. Animal behaviour, 81(1), 11-18. 

MacDougall-Shackleton, S. A., Hulse, S. H., & Ball, G. F. (1998). Neural bases of song 

preferences in female zebra finches (Taeniopygia guttata). Neuroreport,9(13), 3047-3052. 



www.manaraa.com

131 

 

 

Maney, D. L. (2013). The incentive salience of courtship vocalizations: Hormone-mediated 

‘wanting’in the auditory system. Hearing research, 305, 19-30. 

Marler, P. (1970). Birdsong and speech development: Could there be parallels? There may be 

basic rules governing vocal learning to which many species conform, including man. American 

Scientist, 669-673. 

Marler, P. (1991). Song-learning behavior: the interface with neuroethology.Trends in 

neurosciences, 14(5), 199-206. 

Matragrano, L. L., Sanford, S. E., Salvante, K. G., Sockman, K. W., & Maney, D. L. (2011). 

Estradiol‐dependent catecholaminergic innervation of auditory areas in a seasonally breeding 

songbird. European Journal of Neuroscience,34(3), 416-425. 

McCarthy, M. M., Arnold, A. P., Ball, G. F., Blaustein, J. D., & De Vries, G. J. (2012). Sex 

differences in the brain: the not so inconvenient truth. The Journal of Neuroscience, 32(7), 2241-

2247. 

McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems 

value immediate and delayed monetary rewards.Science, 306(5695), 503-507. 

Melis, M. R., & Argiolas, A. (1995). Dopamine and sexual behavior.Neuroscience & 

Biobehavioral Reviews, 19(1), 19-38. 

Mello, C. V., Vicario, D. S., & Clayton, D. F. (1992). Song presentation induces gene expression 

in the songbird forebrain. Proceedings of the National Academy of Sciences, 89(15), 6818-6822. 

Mello, C. V., Pinaud, R., & Ribeiro, S. (1998). Noradrenergic system of the zebra finch brain: 

immunocytochemical study of dopamine-ß-hydroxylase. J Comp Neurol, 400, 207-228. 



www.manaraa.com

132 

 

 

Mello, C. V., & Clayton, D. F. (1994). Song-induced ZENK gene expression in auditory 

pathways of songbird brain and its relation to the song control system.The Journal of 

neuroscience, 14(11), 6652-6666. 

Mello, C. V., Velho, T. A., & Pinaud, R. (2004). Song‐induced gene expression: a window on 

song auditory processing and perception. Annals of the New York Academy of Sciences, 1016(1), 

263-281. 

Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and 

vasopressin in the human brain: social neuropeptides for translational medicine. Nature Reviews 

Neuroscience, 12(9), 524-538. 

Miller, D. B. (1979). The acoustic basis of mate recognition by female zebra finches 

(Taeniopygia guttata). Animal Behaviour, 27, 376-380. 

Miller, D. B. (1979). Long-term recognition of father's song by female zebra finches. 

Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., & Caron, M. G. (1998). Dopamine 

receptors: from structure to function. Physiological reviews, 78(1), 189-225. 

Mohiuddin, S., & Ghaziuddin, M. (2013). Psychopharmacology of autism spectrum disorders: A 

selective review. Autism, 17(6), 645-654. 

Moorman, S., Mello, C. V., & Bolhuis, J. J. (2011). From songs to synapses: Molecular 

mechanisms of birdsong memory. Bioessays, 33(5), 377-385. 

Moorman, S., Gobes, S. M., Kuijpers, M., Kerkhofs, A., Zandbergen, M. A., & Bolhuis, J. J. 

(2012). Human-like brain hemispheric dominance in birdsong learning. Proceedings of the 

National Academy of Sciences, 109(31), 12782-12787. 



www.manaraa.com

133 

 

 

Newman, S. W. (1999). The medial extended amygdala in male reproductive behavior a node in 

the mammalian social behavior network. Annals of the New York Academy of Sciences, 877(1), 

242-257. 

Noble, E. P. (2000). Addiction and its reward process through polymorphisms of the D< sub> 

2</sub> dopamine receptor gene: a review. European Psychiatry, 15(2), 79-89. 

Nottebohm, F., Alvarez-Buylla, A., Cynx, J., Kirn, J., Ling, C. Y., Nottebohm, M., & Williams, 

H. (1990). Song learning in birds: the relation between perception and production. Philosophical 

Transactions of the Royal Society of London. Series B: Biological Sciences, 329(1253), 115-124. 

Nottebohm, F. (1991). Reassessing the mechanisms and origins of vocal learning in 

birds. Trends in neurosciences, 14(5), 206-211. 

Nottebohm, F. (2002). Neuronal replacement in adult brain. Brain research bulletin, 57(6), 737-

749. 

Nutt, D. J., Baldwin, D. S., & Clayton, A. H. (2006). The role of dopamine and norepinephrine 

in depression and antidepressant treatment. Journal of Clinical Psychiatry, 67, 3. 

Odendaal, J. S. J., & Meintjes, R. A. (2003). Neurophysiological correlates of affiliative 

behaviour between humans and dogs. The Veterinary Journal, 165(3), 296-301. 

O’Donnell, J., Zeppenfeld, D., McConnell, E., Pena, S., & Nedergaard, M. (2012). 

Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize 

CNS performance. Neurochemical research, 37(11), 2496-2512. 

Okuhata, S., & Saito, N. (1987). Synaptic connections of thalamo-cerebral vocal nuclei of the 

canary. Brain research bulletin, 18(1), 35-44. 



www.manaraa.com

134 

 

 

Oldfield, R. G., & Hofmann, H. A. (2011). Neuropeptide regulation of social behavior in a 

monogamous cichlid fish. Physiology & behavior, 102(3), 296-303. 

Ophir, A. G., Gessel, A., Zheng, D. J., & Phelps, S. M. (2012). Oxytocin receptor density is 

associated with male mating tactics and social monogamy.Hormones and behavior, 61(3), 445-

453. 

Pan, Y., Liu, Y., Young, K. A., Zhang, Z., & Wang, Z. (2009). Post-weaning social isolation 

alters anxiety-related behavior and neurochemical gene expression in the brain of male prairie 

voles. Neuroscience letters, 454(1), 67-71. 

Pedersen, A., & Tomaszycki, M. L. (2012). Oxytocin antagonist treatments alter the formation of 

pair relationships in zebra finches of both sexes.Hormones and behavior, 62(2), 113-119. 

Petersson, M., Uvnäs-Moberg, K., Erhardt, S., & Engberg, G. (1998). Oxytocin increases locus 

coeruleus alpha 2-adrenoreceptor responsiveness in rats.Neuroscience letters, 255(2), 115-118. 

Pfaus, J. G., Kippin, T. E., & Centeno, S. (2001). Conditioning and sexual behavior: a 

review. Hormones and Behavior, 40(2), 291-321. 

Press, M. F., Finn, R. S., Cameron, D., Di Leo, A., Geyer, C. E., Villalobos, I. E.,& Koehler, M. 

T. (2008). HER-2 gene amplification, HER-2 and epidermal growth factor receptor mRNA and 

protein expression, and lapatinib efficacy in women with metastatic breast cancer. Clinical 

Cancer Research, 14(23), 7861-7870. 

Rauceo, S., Harding, C. F., Maldonado, A., Gaysinkaya, L., Tulloch, I., & Rodriguez, E. (2008). 

Dopaminergic modulation of reproductive behavior and activity in male zebra 

finches. Behavioural brain research, 187(1), 133-139. 



www.manaraa.com

135 

 

 

Reiner, A., Perkel, D. J., Bruce, L. L., Butler, A. B., Csillag, A., Kuenzel, W.,& Jarvis, E. D. 

(2004). Revised nomenclature for avian telencephalon and some related brainstem 

nuclei. Journal of Comparative Neurology, 473(3), 377-414. 

Ribeiro, S., Cecchi, G. A., Magnasco, M. O., & Mello, C. V. (1998). Toward a song code: 

evidence for a syllabic representation in the canary brain. Neuron,21(2), 359-371. 

Riebel, K., Smallegange, I. M., Terpstra, N. J., & Bolhuis, J. J. (2002). Sexual equality in zebra 

finch song preference: evidence for a dissociation between song recognition and production 

learning. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1492), 

729-733. 

Riebel, K. (2000). Early exposure leads to repeatable preferences for male song in female zebra 

finches. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1461), 

2553-2558. 

Riebel, K. (2003). The" mute" sex revisited: vocal production and perception learning in female 

songbirds. Advances in the Study of Behavior, 33, 49-86. 

Rimmele, U., Hediger, K., Heinrichs, M., & Klaver, P. (2009). Oxytocin makes a face in 

memory familiar. The Journal of Neuroscience, 29(1), 38-42. 

Riters, L. V., & Ball, G. F. (2002). Sex differences in the densities of α< sub> 2</sub>-

adrenergic receptors in the song control system, but not the medial preoptic nucleus in zebra 

finches. Journal of chemical neuroanatomy, 23(4), 269-277. 

Robinson, G. E., Fernald, R. D., & Clayton, D. F. (2008). Genes and social 

behavior. science, 322(5903), 896-900. 



www.manaraa.com

136 

 

 

Ross, H. E., Cole, C. D., Smith, Y., Neumann, I. D., Landgraf, R., Murphy, A. Z., & Young, L. J. 

(2009). Characterization of the oxytocin system regulating affiliative behavior in female prairie 

voles. Neuroscience, 162(4), 892-903. 

Ross, H. E., Freeman, S. M., Spiegel, L. L., Ren, X., Terwilliger, E. F., & Young, L. J. (2009). 

Variation in oxytocin receptor density in the nucleus accumbens has differential effects on 

affiliative behaviors in monogamous and polygamous voles. The Journal of Neuroscience, 29(5), 

1312-1318. 

Ross, H. E., & Young, L. J. (2009). Oxytocin and the neural mechanisms regulating social 

cognition and affiliative behavior. Frontiers in neuroendocrinology, 30(4), 534-547. 

Routtenberg, A. (1968). The two-arousal hypothesis: reticular formation and limbic 

system. Psychological Review, 75(1), 51. 

Sagar, S. M., Sharp, F. R., & Curran, T. (1988). Expression of c-fos protein in brain: metabolic 

mapping at the cellular level. Science, 240(4857), 1328-1331. 

Saif, M., Chatterjee, D., Buske, C., & Gerlai, R. (2013). Sight of conspecific images induces 

changes in neurochemistry in zebrafish. Behavioural brain research, 243, 294-299. 

Sarter, M., & Markowitsch, H. J. (1985). Involvement of the amygdala in learning and memory: 

a critical review, with emphasis on anatomical relations.Behavioral neuroscience, 99(2), 342. 

Sasaki, A., Sotnikova, T. D., Gainetdinov, R. R., & Jarvis, E. D. (2006). Social context-

dependent singing-regulated dopamine. The Journal of neuroscience,26(35), 9010-9014. 

Shamay-Tsoory, S. G., Fischer, M., Dvash, J., Harari, H., Perach-Bloom, N., & Levkovitz, Y. 

(2009). Intranasal administration of oxytocin increases envy and schadenfreude 

(gloating). Biological psychiatry, 66(9), 864-870. 



www.manaraa.com

137 

 

 

Schultz, W. (2010). Review Dopamine signals for reward value and risk: basic and recent 

data. Behav. Brain Funct, 6, 24. 

Silcox, A. P., & Evans, S. M. (1982). Factors affecting the formation and maintenance of pair 

bonds in the zebra finch,< i> Taeniopygia guttata</i>.Animal Behaviour, 30(4), 1237-1243. 

Sizemore, M., & Perkel, D. J. (2008). Noradrenergic and GABAB receptor activation 

differentially modulate inputs to the premotor nucleus RA in zebra finches. Journal of 

neurophysiology, 100(1), 8-18. 

Smeets, W. J., & González, A. (2000). Catecholamine systems in the brain of vertebrates: new 

perspectives through a comparative approach. Brain research reviews, 33(2), 308-379. 

Smiley, K. O., Vahaba, D. M., & Tomaszycki, M. L. (2012). Behavioral effects of progesterone 

on pair bonding and partner preference in the female zebra finch (< i> Taeniopygia 

guttata</i>). Behavioural processes, 90(2), 210-216. 

Smith, A. S., Ågmo, A., Birnie, A. K., & French, J. A. (2010). Manipulation of the oxytocin 

system alters social behavior and attraction in pair-bonding primates,< i> Callithrix 

penicillata</i>. Hormones and behavior, 57(2), 255-262. 

Snowdon, C. T., Pieper, B. A., Boe, C. Y., Cronin, K. A., Kurian, A. V., & Ziegler, T. E. (2010). 

Variation in oxytocin is related to variation in affiliative behavior in monogamous, pairbonded 

tamarins. Hormones and behavior, 58(4), 614-618. 

Sockman, K. W., Gentner, T. Q., & Ball, G. F. (2002). Recent experience modulates forebrain 

gene–expression in response to mate–choice cues in European starlings. Proceedings of the 

Royal Society of London. Series B: Biological Sciences, 269(1508), 2479-2485. 



www.manaraa.com

138 

 

 

Sockman, K. W., & Salvante, K. G. (2008). The integration of song environment by 

catecholaminergic systems innervating the auditory telencephalon of adult female European 

starlings. Developmental neurobiology,68(5), 656-668. 

Soha, J. A., Shimizu, T., & Doupe, A. J. (1996). Development of the catecholaminergic 

innervation of the song system of the male zebra finch.Journal of neurobiology, 29(4), 473-489. 

Solis, M. M., Brainard, M. S., Hessler, N. A., & Doupe, A. J. (2000). Song selectivity and 

sensorimotor signals in vocal learning and production.Proceedings of the National Academy of 

Sciences, 97(22), 11836-11842. 

Starke, K. (1981). α-Adrenoceptor subclassification. In Reviews of Physiology, Biochemistry and 

Pharmacology, Volume 88 (pp. 199-236). Springer Berlin Heidelberg. 

Starr, B. S., & Starr, M. S. (1986). Grooming in the mouse is stimulated by the dopamine D< 

sub> 1</sub> agonist SKF 38393 and by low doses of the D< sub> 1</sub> antagonist SCH 

23390, but is inhibited by dopamine D< sub> 2</sub> agonists, D< sub> 2</sub> antagonists 

and high doses of SCH 23390. Pharmacology Biochemistry and Behavior, 24(4), 837-839. 

Stripling, R., Kruse, A. A., & Clayton, D. F. (2001). Development of song responses in the zebra 

finch caudomedial neostriatum: role of genomic and electrophysiological activities. Journal of 

neurobiology, 48(3), 163-180. 

Terpstra, N. J., Bolhuis, J. J., & den Boer-Visser, A. M. (2004). An analysis of the neural 

representation of birdsong memory. The Journal of neuroscience,24(21), 4971-4977. 

Thompson, J. B., Dzubur, E., Wade, J., & Tomaszycki, M. (2011). The effects of estradiol on 

17β-hydroxysteroid dehydrogenase type IV and androgen receptor expression in the developing 

zebra finch song system. Brain research,1401, 66-73. 



www.manaraa.com

139 

 

 

Tomaszycki, M. L., & Adkins-Regan, E. (2005). Experimental alteration of male song quality 

and output affects female mate choice and pair bond formation in zebra finches. Animal 

behaviour, 70(4), 785-794. 

Tomaszycki, M. L., & Dzubur, E. (2013). 17β-Hydroxysteroid dehydrogenase Type IV, a Z-

linked gene, is higher in females than in males in visual and auditory regions of developing zebra 

finches. Brain research, 1520, 95-106. 

Turner, L. M., Young, A. R., Römpler, H., Schöneberg, T., Phelps, S. M., & Hoekstra, H. E. 

(2010). Monogamy evolves through multiple mechanisms: evidence from V1aR in deer 

mice. Molecular biology and evolution, 27(6), 1269-1278. 

Vahaba, D. M., Lacey, W. H., & Tomaszycki, M. L. (2013). DSP-4, a noradrenergic neurotoxin, 

produces sex-specific effects on pairing and courtship behavior in zebra finches. Behavioural 

brain research, 252, 164-175. 

Velho, T. A., Lu, K., Ribeiro, S., Pinaud, R., Vicario, D., & Mello, C. V. (2012). Noradrenergic 

control of gene expression and long-term neuronal adaptation evoked by learned vocalizations in 

songbirds. PloS one, 7(5), e36276. 

Vyas, A., Harding, C., McGowan, J., Snare, R., & Bogdan, D. (2008). Noradrenergic neurotoxin, 

N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), treatment eliminates 

estrogenic effects on song responsiveness in female zebra finches (< em> Taeniopygia 

guttata</em>).Behavioral neuroscience, 122(5), 1148. 

Wada, K., Howard, J. T., McConnell, P., Whitney, O., Lints, T., Rivas, M. V., & Jarvis, E. D. 

(2006). A molecular neuroethological approach for identifying and characterizing a cascade of 



www.manaraa.com

140 

 

 

behaviorally regulated genes. Proceedings of the National Academy of Sciences, 103(41), 15212-

15217. 

Wang, Z., Smith, W., Major, D. E., & De Vries, G. J. (1994). Sex and species differences in the 

effects of cohabitation on vasopressin messenger RNA expression in the bed nucleus of the stria 

terminalis in prairie voles (< i> Microtus ochrogaster</i>) and meadow voles (< i> Microtus 

pennsylvanicus</i>). Brain research, 650(2), 212-218. 

Wang, Z. X., Liu, Y., Young, L. J., & Insel, T. R. (2000). Hypothalamic vasopressin gene 

expression increases in both males and females postpartum in a biparental rodent. Journal of 

neuroendocrinology, 12(2), 111-120. 

Waterman, S. A., & Harding, C. F. (2008). Neurotoxic effects of DSP-4 on the central 

noradrenergic system in male zebra finches. Behavioural brain research, 188(2), 271-280. 

Wittfoth-Schardt, D., Gründing, J., Wittfoth, M., Lanfermann, H., Heinrichs, M., Domes, G.,& 

Waller, C. (2012). Oxytocin modulates neural reactivity to children's faces as a function of social 

salience. Neuropsychopharmacology,37(8), 1799-1807. 

Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R., & Insel, T. R. (1993). Selective 

aggression and affiliation increase following mating in a monogamous mammal: a role for 

central vasopressin in pair bonding. Nature,365, 545-548. 

Wise, R. A., & Rompré, P. P. (1989). Brain dopamine and reward. Annual review of 

psychology, 40(1), 191-225. 

Wittig, R. M., Crockford, C., Wikberg, E., Seyfarth, R. M., & Cheney, D. L. (2007). Kin-

mediated reconciliation substitutes for direct reconciliation in female baboons. Proceedings of 

the Royal Society B: Biological Sciences, 274(1613), 1109-1115. 



www.manaraa.com

141 

 

 

Yamasue, H., Yee, J. R., Hurlemann, R., Rilling, J. K., Chen, F. S., Meyer-Lindenberg, A., & 

Tost, H. (2012). Integrative approaches utilizing oxytocin to enhance prosocial behavior: from 

animal and human social behavior to autistic social dysfunction. The Journal of 

Neuroscience, 32(41), 14109-14117a. 

Young, L. J., & Wang, Z. (2004). The neurobiology of pair bonding. Nature neuroscience, 7(10), 

1048-1054. 

Zak, P. J., Stanton, A. A., & Ahmadi, S. (2007). Oxytocin increases generosity in humans. PLoS 

One, 2(11), e1128. 

Zann, R. A. (1996). The zebra finch: a synthesis of field and laboratory studies(Vol. 5). Oxford:: 

Oxford University Press. 

 

  



www.manaraa.com

142 

 

 

ABSTRACT 

THE EFFECTS OF COURTSHIP AND PAIRING BEHAVIOR ON THE 

NONAPEPTIDE AND NORADRENERGIC SYSTEMS OF ADULT MALE AND 

FEMALE ZEBRA FINCHES 
 

by 
 

ERIN LOWREY ONDERCIN 
 

August 2015 

 

Advisor: Dr. Michelle Tomaszycki 

Major: Psychology (Behavioral and Cognitive Neuroscience) 

Degree: Doctor of Philosophy 

 Social relationships are complex and likely involve the multiple neural circuits, including 

those involved in learning, memory, motivation, and attention.  Two neurotransmitter pathways 

highly involved in these neural circuits are norepinephrine (NE) and the nonapeptides, 

vasopressin (AVP) and oxytocin (OT).  There is extensive research implicating a role for the 

nonapeptides in trust, sociality, parental care, and romantic relationships.  There is little direct 

evidence for the role of nonapeptides in monogamous relationships in any species other than the 

prairie vole (Goodson 2013).  However, there is evidence that nonapeptides are important in pair 

bonding for both male and female zebra finches (Lowrey & Tomaszycki, 2014) and treatment 

with an OT antagonist results in an increased latency to pair in both sexes (Pederson & 

Tomaszycki, 2012). Thus, the role of nonapeptides in monogamous social behavior deserves 

further investigation.  The role of NE in the avian song system has also been extensively studied, 
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but, to date, only one study has examined the role of NE in courtship.  Depleting NE in male 

zebra finches resulted in a decrease in courtship behaviors and a latency to form a pair bond 

(Vahaba, Lacey, & Tomaszycki, 2013), indicating that NE does play a role in courtship and pair 

bonding.  I hypothesize that OT modulates the noradrenergic system by increasing the level of 

alpha-adrenoceptor (ADRA) mRNA within the song system and auditory system to mediate male 

courtship behaviors and female choice. 
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